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ABSTRACT 
 

This study examines the morphological variation of the estuarine croaker (Pseudotolithus 
elongatus) in the Cross River Estuary, Nigeria, to understand how environmental factors shape fish 
populations. A total of 815 fish specimens were collected from five stations along the estuary, 
representing diverse salinity gradients and levels of anthropogenic influence. Morphometric 
analysis focused on 11 key body traits, adjusted for size using allometric scaling. Principal 

Original Research Article 

https://doi.org/10.56557/upjoz/2025/v46i14743
https://prh.mbimph.com/review-history/4473


 
 
 
 

Essien et al.; Uttar Pradesh J. Zool., vol. 46, no. 1, pp. 66-85, 2025; Article no.UPJOZ.4473 
 
 

 
67 

 

Component Analysis (PCA) revealed that the first component (PC1) accounted for 91.58% of the 
total variance, capturing the majority of morphological variation. Discriminant Function Analysis 
(DFA) further identified three distinct morphological groups, with an overall classification accuracy 
of 61.44%. Monte Carlo simulations indicated that sampling variability could impact observed 
morphological distinctions, particularly at sites with minor environmental differences. Findings 
underscore the role of environmental gradients in driving morphological diversity and suggest the 
need for refined sampling protocols and classification models to improve species differentiation in 
estuarine ecosystems. The study recommends managing the croaker population as distinct stocks 
based on local environmental conditions to support effective conservation, thereby sustaining 
population diversity and resilience in the estuary. 
 

 
Keywords: Pseudotolithus elongatus; commercial fisheries; ecosystems; food webs. 
 

1. INTRODUCTION 
 
The African croaker (Pseudotolithus elongatus) is 
a species of substantial economic, social, and 
ecological importance in West Africa, particularly 
in Nigeria's coastal and estuarine ecosystems. In 
Cross River State, this species sustains local 
fisheries, serving as a crucial source of food 
security, employment, and income for coastal 
communities (Ajah & Udoh, 2012). It also plays a 
vital role in commercial fisheries, contributing 
significantly to regional economies and export 
markets. Ecologically, P. elongatus is a key 
component of the estuarine food web, acting as 
both predator and prey, and its abundance 
reflects the health of these dynamic ecosystems 
(Nwosu, et al., 2010). As a predator, P. elongatus 
primarily feeds on smaller organisms, including 
crustaceans, mollusks, and small fish species. Its 
diet reflects its position as a mid-level predator, 
which allows it to regulate the populations of 
these prey species and maintain ecosystem 
stability. The species' predatory behaviour is 
adapted to its diverse habitats, such as muddy 
estuarine bottoms and sandy coastal areas, 
where it uses its sensory adaptations, including a 
well-developed lateral line system, to detect prey 
in turbid waters. By consuming benthic 
invertebrates and small fish, P. elongatus also 
facilitates energy transfer from lower trophic 
levels to higher ones, supporting the productivity 
of estuarine food webs (Uchenna, et al., 2023). 
Simultaneously, P. elongatus serves as prey for 
larger predators, including piscivorous fish 
species such as barracudas (Sphyraena spp.), 
groupers (Epinephelus spp.), and sharks 
(Asuquo, et al., 2013; Abiaobo, et al., 2024). 
Marine mammals and certain bird species, 
particularly those inhabiting coastal and 
estuarine regions, also feed on P. elongatus 
(Otogo, et al., 2023). Its role as prey makes it an 
integral link in the trophic network, providing 
energy and nutrients to top predators that rely on 

its abundance. More so, the high fecundity and 
adaptability of P. elongatus to diverse habitats 
contribute to its availability as a food source, 
ensuring its significance in supporting higher 
trophic levels. Its adaptability to freshwater and 
marine environments, including the Cross River 
estuary, highlights its importance in 
understanding population dynamics and informs 
broader fisheries management and conservation 
efforts (Paugy, et al., 2003; Asuquo & Ifon, 2019). 
 
In the Cross River estuary, local fishers have 
reported significant reductions in the abundance 
of P. elongatus over the past two decades 
(Nwosu, et al., 2010; Asuquo & Ifon, 2019). 
Historical data indicate that this species once 
constituted a substantial portion of the total fish 
landings, supporting local economies and food 
security. However, increased fishing pressure, 
habitat degradation, and environmental 
fluctuations have contributed to the observed 
decline. Artisanal fishing practices, including the 
use of non-selective gear such as small-mesh 
gillnets and beach seines, have 
disproportionately affected juvenile populations, 
further exacerbating the species' vulnerability 
(Macário, et al., 2021). Beyond the Cross River 
estuary, similar trends have been documented 
along the West African coastline. In countries 
such as Ghana, Côte d'Ivoire, and Senegal, P. 
elongatus populations are under intense 
pressure due to overfishing, climate change, and 
pollution (Paugy, et al., 2003; Ssentongo et al., 
1986). These challenges are particularly 
pronounced in estuarine ecosystems, where the 
species relies on specific habitats for spawning 
and nursery grounds. The degradation of 
mangroves, which provide critical shelter and 
feeding areas, has further disrupted the life cycle 
of P. elongatus, limiting its ability to replenish 
stocks (Ifon & Asuquo, 2021). The declining 
catch rates of P. elongatus have significant 
ecological, economic, and social implications. As 
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a mid-level predator and prey species, its 
reduced abundance disrupts trophic dynamics in 
the estuarine food web. Economically, it 
threatens the livelihoods of artisanal fishers and 
reduces the availability of a critical protein source 
for local communities. Socially, the decline has 
led to increased competition and conflict among 
fishers, as well as reduced incomes in 
communities dependent on fishing. 
 
African croakers exhibit a complex life cycle in 
the dynamic estuarine environments, particularly 
in regions like the Cross River Estuary. Adults of 
this species are typically found in brackish waters 
and nearshore marine habitats, including sandy 
and muddy bottoms, tidal creeks, and saline 
zones (Ajah & Udoh, 2012; Holzlohner & Nwosu, 
2014). While detailed migratory patterns are less 
well understood, it is believed that P. elongatus 
may exhibit site fidelity or natal homing 
behaviour, where individuals return to specific 
estuarine or nearshore areas for spawning. The 
early life stages of P. elongatus are likely 
influenced by the unique environmental 
conditions found within these estuarine 
ecosystems. Juveniles may spend time in the 
freshwater or brackish zones of the estuary 
before migrating to marine environments, where 
they grow and mature. The duration of their stay 
in estuarine habitats could vary depending on 
factors such as salinity, temperature, and habitat 
complexity, with different regions offering varying 
ecological pressures that could shape their 
growth and development. These environmental 
conditions, including fluctuating salinity, 
temperature, and habitat structure, may lead to 
local adaptations in P. elongatus, potentially 
contributing to morphological differences 
between populations in different parts of the 
estuary. For example, populations inhabiting 
more saline creeks or mud flats might exhibit 
distinct phenotypic traits compared to those 
found in less saline or more vegetated areas. 
This ecological variation provides an opportunity 
to study potential stock differentiation based on 
natal origin and habitat-driven selection 
pressures. 
 
By analyzing the morphometric traits of P. 
elongatus across different estuarine habitats, it 
could be possible to detect measurable 
differences in body shape, size, and other 
phenotypic characteristics (Opeh, et al., 2023; 
Chindo, et al., 2024). Such differences could 
reflect adaptations to local conditions during 
early life stages, contributing to the stock 
structure of this species within the estuary 

(Suleiman, et al., 2019; Ekpo, et al., 2021). 
Understanding the stock structure of 
Pseudotolithus elongatus is fundamental to 
developing effective fisheries management 
strategies in the Cross River Estuary, Nigeria. 
The absence of such knowledge can lead to 
several ecological and management challenges, 
including the erosion of genetic diversity, 
alterations in key biological traits such as 
reduced body size, overfishing of less productive 
stocks, and inaccuracies in predicting the 
outcomes of management interventions (Smith, 
et al., 1991; Ricker, 1981). Despite its ecological 
and economic significance, the stock structure of 
P. elongatus in the Cross River Estuary remains 
poorly understood. This species occupies a 
variety of estuarine habitats, such as mangrove-
lined creeks, sandy and muddy bottoms, and 
saline inlets, which are characterized by dynamic 
environmental conditions, including fluctuating 
salinity, temperature, and habitat complexity 
(Hanif et al., 2019). These environmental       
factors likely influence the morphology                
and behavior of P. elongatus, potentially           
leading to the development of distinct 
populations within the estuary (Ifon & Asuquo, 
2021). Identifying such stock structures is 
essential for ensuring the sustainability of P. 
elongatus fisheries and protecting the species 
from overexploitation. 
 
Morphometric analysis, which involves the 
quantitative study of fish shape and form, has 
proven to be a valuable tool for identifying stock 
structure. Morphometrics is especially suitable 
for regions with limited access to advanced 
molecular techniques, as it provides cost-
effective insights into population differentiation 
and environmental adaptations (Cadrin & Silva, 
2005). For P. elongatus, morphometric analyses 
can reveal whether distinct populations exist 
within the estuary, driven by variations in habitat 
conditions or other ecological factors. In the 
Cross River Estuary, stock structure analysis of 
P. elongatus is particularly relevant given the 
species’ declining catch rates (Ajah & Udoh, 
2012; Asuquo & Ifon, 2019). Overfishing, habitat 
degradation, and the use of non-selective fishing 
gear are likely driving this decline (Ameh, et al., 
2023). Understanding the stock structure could 
help identify critical spawning and nursery areas, 
assess habitat-specific productivity, and protect 
vulnerable populations. For example, if distinct 
stocks are linked to specific habitats, targeted 
conservation efforts could be developed to 
preserve these areas and ensure the 
sustainability of the fishery. 
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Moreover, recognizing the stock structure of P. 
elongatus is crucial for mitigating the risks of 
overfishing less productive populations. If 
populations within the estuary differ in their 
growth rates, reproductive potential, or response 
to environmental pressures, failing to account for 
these differences in management plans could 
result in the depletion of less resilient stocks 
(Agi-Odey, et al., 2024). Effective stock-specific 
management strategies would help optimize the 
fishery, ensuring the long-term viability of P. 
elongatus populations and the livelihoods they 
support. By identifying stock structures through 
morphometric analysis, this study aims to provide 
critical insights into the ecological adaptations 
and population dynamics of P. elongatus. These 
findings will contribute to informed decision-
making for sustainable fisheries management 
and the conservation of this economically and 
ecologically significant species in the Cross River 
Estuary. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 
The study was conducted in the Cross River 
Estuary, a vital ecological zone located in 
southeastern Nigeria, within Cross River State. 
This estuarine system is one of the most 
extensive and biologically diverse in West Africa. 
It supports a wide range of aquatic and terrestrial 
species. Geographically, the Cross River Estuary 
is positioned between latitudes 4°45' and 6°15' N 
and longitudes 8°00' and 8°55' E of the 
Greenwich meridian (Fig. 1). It originates as the 
Manyu River in the Mamfe region of Cameroon, 
approximately 74 km from the Nigerian border. 
The Cross River flows southward into Nigeria, 
where it expands into a broad estuarine area 
before emptying into the Atlantic Ocean at the 
Gulf of Guinea (Zapfack, et al., 2001). 
 
The estuary covers approximately 54,00 sq. km. 
serving as a navigational route to different ports 
(Calabar, Port Harcourt, Onne, Okrika, and 
Bonny) in Nigeria (Emeka, et al., 2023). The 
estuary's open connection to the Gulf of Guinea 
significantly influences its ecological dynamics. 
Marine and freshwater inputs create a gradient of 
environmental conditions along the estuary, with 
salinity levels ranging from nearly freshwater in 
the upper reaches to higher salinity near the 
mouth where it meets the Atlantic Ocean (Otogo 

et al., 2023). This variation, along with tidal 
fluctuations and seasonal changes, creates 
numerous ecological niches that shape the 
distribution, growth, and behavior of fish 
populations, including the African croaker (P. 
elongatus), the focus of this study. 
 
Fringed by extensive mangrove forests, primarily 
composed of Rhizophora and Avicennia species, 
the estuary provides crucial habitats that support 
high biodiversity. These mangroves, interspersed 
with mudflats and sandy shores, serve as 
breeding, nursery, and feeding grounds for 
various fish and invertebrate species, each 
adapted to distinct habitats within the estuary. 
Local fishing communities depend heavily on the 
estuary for their livelihoods, with artisanal fishing 
being a predominant activity. Species like P. 
elongatus hold substantial commercial value, 
supporting small-scale fisheries that supply local 
and regional markets (Asuquo & Ifon, 2022). 
However, anthropogenic pressures such as 
overfishing, habitat degradation, and pollution 
threaten the ecosystem. Sustainable 
management of fisheries within the estuary is 
therefore critical to conserving biodiversity and 
supporting the local economy. 
 

2.2 Data Collection 
 
Fish specimens for this study were collected from 
a total of 815 individuals across multiple sites 
within the lower Cross River Estuary in Nigeria. 
Sampling was conducted systematically from 
March to August 2024, encompassing five sites: 
Itu Beach, Calabar River Mouth, Oron Beach, 
Great Kwa River Mouth, and the estuary mouth 
(Fig. 1). These sites were chosen based on 
varying salinity gradients, habitat types, levels of 
anthropogenic influence, and proximity to the 
Atlantic Ocean. The total length of the fish 
ranged from 10.2 cm at Itu Beach to 53.2 cm at 
the estuary mouth. The specimens from the 
estuary mouth exhibited the longest mean total 
length (28.22 ± 2.38 cm), while those from Itu 
Beach had the shortest mean total length (22.44 
± 1.03 cm) (Table 1). 
 
This map provides a spatial reference for the 
study locations, illustrating the environmental 
gradients affecting fish populations across the 
estuary. Stations S1-S5=Estuary Mouth, Great 
Kwa River Mouth, Oron Beach, Calabar River 
Mouth, and Itu Beach respectively. 
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Table 1. Sampling Stations (S1 – S5) and Characteristics of Fish Specimens Collected from the Lower Cross River Estuary, Nigeria 

 

Station Description Latitude Longitude Distance (km) to 
the Atlantic Ocean  

No. of fish 
samples 

Size range 
(cm) 

Mean 
±SD (cm) 

S1 Estuary mouth  4°35'8"  8°24'28" 8.38 150 15.0-53.2 28.22±2.38 
S2 Great Kwa River 

Mouth 
4°46'7"  8°22'32" 28.4 200 12.5-51.2 25.12±1.73 

S3 Oron Beach 4°49'6" 8°15'59" 38,5 140 11.8-50.8 24.24±0.84 
S4 Calabar River Mouth 4°54'36" 8°15'44" 47.7 190 11.4-51.0 23.82±0.76 
S5 Itu beach 5°12'54" 7°59'50" 98.9 135 10.2-52.4 22.44±1.03 
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Fig. 1. Map of the Cross River Estuary with sampling stations (S1–S5) marked 
 

2.3 Morphometric measurements 
 
Morphometric measurements focused on 11 key 
body features commonly used to distinguish fish 
populations (Turan, 2004). These features 
included: Orbital Diameter (OD), Relative Eye 
Diameter (RED), Mouth Width (MW), Mouth 
Depth (MD), Trunk Thickness (TT), Length of the 
Pectoral Fin (LPF), Pectoral Fin Width (PFW), 
Length of the Caudal Peduncle (LCP), Width of 
the Caudal Peduncle (WCP), Depth of the 
Caudal Peduncle (DCP), and Length of the 
Caudal Fin (LCF). These traits reflect both 
ecological adaptations and population structure 
(Bookstein, 1991). To ensure accuracy and 
minimize human error, measurements were 
taken using digital calipers, recorded to the 
nearest 0.01 cm (Zelditch, et al., 2012). Each 
morphometric trait was measured three times per 
individual, and the average value was used in 
subsequent analyses to enhance reliability. A 
detailed methodological description of the 
croaker from the lower Cross River Estuary can 
be found in Asuquo and Ifon (2021). 
 

2.4 Size Adjustment 
 
In morphometric studies, variations in size can 
confound the results by masking true shape 

differences, as both the shape and relative 
proportions of measured characters often scale 
with size (Reist, 1985). To address this issue, we 
applied an allometry index to adjust for size-
related variability among individuals. This 
adjustment was based on the allometric scaling 
equation with a standard size measure (total 
length) to normalize the remaining morphometric 
traits (Jolliffe, 2002). Specifically, the following 
formula was applied to each character: 
 

𝑀′ = 𝑀 (
𝐿𝑚𝑒𝑎𝑛

𝐿
)

𝑏

               1 

 
where M′ is the adjusted measurement, M is the 
raw measurement, L is the individual’s total 
length, Lmean is the mean length of all sampled 
individuals, and b is the allometric growth 
coefficient for the trait (Jolliffe, 2002). This 
formula allows for size-independent comparison 
of morphometric traits, facilitating shape-based 
assessments across different fish populations 
(Elliott, et al., 1995). 
 

2.5 Data Standardization 
 
Following size adjustment, the data were 
standardized to prepare for multivariate analysis. 
Standardization involved normalizing the 
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morphometric data by subtracting the mean and 
dividing by the standard deviation for each trait. 
This step is essential in multivariate analysis, as 
it ensures that all variables contribute equally to 
the analysis, preventing traits with larger ranges 
from disproportionately influencing the results 
(Tabachnick & Fidell, 2007). Standardization also 
helps manage any skewed distributions within 
the data, ensuring that outliers do not unduly 
influence the results (Zar, 2010). By scaling and 
centering the data, we enable Principal 
Component Analysis (PCA) and Discriminant 
Function Analysis (DFA) to identify true shape 
variation that may otherwise be masked by 
differences in measurement units or scales. 
 
The selection of morphometric traits for this study 
was guided by their ecological relevance and 
prior research demonstrating their efficacy in 
differentiating fish populations (Rohlf & Marcus, 
1993). For instance, traits like Orbital Diameter 
and Relative Eye Diameter provide insights into 
sensory adaptations, while body depth and 
caudal peduncle length are indicative of 
swimming efficiency and habitat use, respectively 
(Wimberger, 1992). The preprocessing steps—
size adjustment and data standardization—were 
carefully chosen to control for potential biases 
and ensure that the analyses accurately reflect 
shape differences influenced by environmental 
factors, rather than by size discrepancies or 
measurement variability. 
 

3. STATISTICAL ANALYSIS 
 

3.1 Principal Component Analysis (PCA) 
 
Principal Component Analysis (PCA) is a widely 
used technique in morphometric studies for 
dimensionality reduction, effectively summarizing 
the shape-related variance of morphometric traits 
(Jolliffe, 2002). In this study, PCA is applied to 
reveal patterns in morphometric data by reducing 
redundant dimensions while retaining critical 
variance associated with shape, enabling 
effective separation of fish populations based on 
morphological characteristics (Asuquo & 
Asangusung, 2019). 
 

3.2 Standardization of Data 
 
Before performing PCA, the dataset was 
standardized to ensure that each variable 
contributed equally to the analysis. 
Standardization was achieved using the formula: 
 

𝑍𝑖𝑗 =
𝑋𝑖𝑗−𝜇𝑗

𝜎𝑗
                            2 

 
where Zij is the standardized value of the i-th 
observation of the j-th variable, Xij is the original 
value, μj is the mean of the j-th variable, and σj is 
the standard deviation of the j-th variable. This 
step transformed each variable to have a mean 
of 0 and a standard deviation of 1. 
 

1. Covariance Matrix Computation: The 
first step in PCA was to compute the 
covariance matrix Σ, which provided a 
measure of how each variable relates to 
the others. The covariance matrix is 
calculated as: 

 

𝛴 =
1

𝑛−1
𝑋𝑇𝑋               3 

 
where n represent number of data points on all 
traits, XT represents the transpose of X. 
 

2. Eigenvalues and Eigenvectors: To 
identify the principal components, we 
solved the characteristic equation of the 
covariance matrix: 

 
𝛴𝑒𝑖 = 𝜆𝑖𝑒𝑖                  4 

 
where ei is the i-th eigenvector (or principal 
component direction) and λi is the corresponding 
eigenvalue. Each eigenvalue λi represents the 
amount of variance captured by the principal 
component ei , ordered such that λ1≥λ2≥⋯≥λp. 
 

3. Projection and Principal Components: 
The original data X was projected onto the 
eigenvectors to obtain the principal 
components: 

 
𝑃𝐶𝑖 = 𝑋𝑒𝑖                5 

 
where PCi denotes the projection of X onto the i-
th eigenvector, yielding the principal component 
scores. By selecting the first k components that 
explain most of the total variance (determined by 
a cumulative variance threshold of 90%), 
dimensionality is reduced while retaining 
essential shape-related information. 
 

4. Variance Explained: The percentage of 
total variance explained by each principal 
component was computed as: 

 
𝜆𝑖

∑ 𝜆𝑗
𝑝
𝑗=1

× 100               6 
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This measure aids in understanding the 
contribution of each principal component to the 
total variability, informing the selection of 
components for further analysis. 
 
PCA was applied to the morphometric data to 
examine the variation in morphometric traits 
across fish populations from different sampling 
sites. The components retained based on the 
variance threshold were analyzed to assess site-
specific morphological patterns. This approach 
enables the identification of shape-related 
differences between populations, with each 
principal component representing a linear 
combination of the original morphometric traits 
(Asuquo & Asangusung, 2019). By focusing on 
components with high variance, PCA allows for 
an efficient yet comprehensive comparison of 
morphometric variation between groups, 
providing insights into how environmental factors 
may drive phenotypic divergence. 
 

3.3 Discriminant Function Analysis (DFA) 
 
Discriminant Function Analysis (DFA) is 
employed as a classification tool to differentiate 
between groups based on morphological traits, 
which are often shaped by ecological and 
environmental factors (Asuquo & Ifon, 2021). In 
the context of this study, DFA was used to 
classify individual fish into pre-defined groups 
based on morphometric characteristics, 
facilitating the detection of distinct population 
structures within the estuarine environment. By 
creating a discriminant function that maximizes 
the separation between these groups, DFA helps 
to quantify the morphological divergence 
between populations sampled from different 
locations, shedding light on habitat-induced 
phenotypic variation (Segherloo, et al., 2018; 
Asuquo, et al., 2024). 
 
Validation of the DFA model is essential to 
ensure the accuracy and reliability of the 
classification results. Cross-validation is 
conducted to assess the model's robustness, 
where the dataset is divided, and the 
discriminant function is applied to classify 
samples that were not included in model training. 
The model’s performance was quantified through 
classification success rates, indicating the 
percentage of correctly classified samples in 
each group. Two key criteria guide the 
assessment of model reliability: 
 

1. Proportional Chance Criterion: This 
criterion tests whether the model performs 

better than chance by comparing the 
observed classification success rate to a 
random allocation (Asuquo & Ifon, 2021). A 
statistically significant result indicates that 
DFA accurately classifies the samples 
beyond what could be expected from 
chance alone. 

2. Maximum Chance Criterion: This 
criterion evaluates the likelihood that the 
model’s classification rate exceeds that of 
the largest group in the dataset. This 
ensures that the DFA model is not biased 
toward over-represented groups, offering a 
balanced evaluation across all population 
groups (Cronin-Fine, et al., 2013). 

 
DFA operates by creating linear combinations of 
predictor variables (morphometric traits) to form 
discriminant functions, each of which maximizes 
separation between predefined groups. Given k 
groups and p predictors, DFA identifies up to 
𝑚𝑖𝑛(𝑘 − 1, 𝑝)  discriminant functions, each 
contributing to group differentiation (Tabachnick 
& Fidell, 2007). The core DFA equation is: 
 

𝐷 = 𝑤1𝑋1 + 𝑤2𝑋2 + ⋯ + 𝑤𝑝𝑋𝑝             7 

 
where D is the discriminant score, Xi are the 
predictor variables, and wi are the weights 
(coefficients) assigned to each predictor to 
maximize the between-group variance relative to 
within-group variance. The discriminant functions 
are calculated as follows: 
 

1. Within-Group and Between-Group 
Variance: The total variance in the dataset 
was divided into between-group and 
within-group components. The DFA 
maximizes the ratio of between-group to 
within-group variance by finding 
coefficients wi that best separate the 
groups. This ratio, termed Wilks’ Lambda 
(Λ), assesses the discriminatory power of 
the function, with values closer to zero 
indicating greater separation. 

2. Canonical Correlation: Canonical 
correlation measures the relationship 
between the discriminant scores and the 
grouping variable, with higher values 
indicating stronger discriminatory ability. 
Canonical discriminant functions are 
derived from eigenvalues of the matrix: 

 

𝑆𝑏𝑆𝑤
−1                8 

 
where Sb and Sw are the between-group and 
within-group scatter matrices, respectively. The 
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eigenvectors corresponding to the largest 
eigenvalues form the discriminant functions, 
while the eigenvalues represent the 
discriminatory power of each function. 
 

3. Classification: Once the discriminant 
functions are computed, they are used to 
calculate discriminant scores for each 
sample, which are then compared to group 
centroids. A sample is classified into the 
group with the nearest centroid, thereby 
minimizing the Mahalanobis distance 
between the sample and group means. To 
enhance the model’s reliability, we applied 
a cross-validation method, specifically the 
leave-one-out classification method 
(Lachenbruch, 2014), to estimate the 
potential error rates in the grouping 
process. This method involves sequentially 
omitting each sample, classifying it based 
on the remaining data, and assessing the 
accuracy of the classification.  

 
Additionally, we tested the precision of the 

classification model by randomly selecting 
75% of the data as a training set to 
develop the model, while the remaining 
25% served as a test set to independently 
evaluate the model’s efficacy. This 
approach allowed us to verify the model’s 
ability to correctly classify new 
observations, as advised by the maximum 
and proportional chance criteria (Cronin-
Fine, et al., 2013), which provide 
benchmarks for classification success 
rates beyond random chance. 

 

4. SIMULATIONS AND GRAPHICAL 
REPRESENTATIONS 

 

4.1 Monte Carlo Simulations 
 
Monte Carlo simulations were utilized in this 
study to assess the robustness and reliability of 
the multivariate models, particularly Principal 
Component Analysis (PCA) and Discriminant 
Function Analysis (DFA). In ecological and 
morphometric studies, Monte Carlo simulations 
provide a statistical method for estimating the 
performance of models under varied, randomized 
conditions, which helps ensure that results are 
not artifacts of sampling bias or specific 
parameter choices (Pokropek, et al., 2019). By 
generating numerous synthetic datasets, these 
simulations allowed us to test the stability of PCA 
and DFA results across potential sampling 
variations, reinforcing the models’ validity in 

identifying true morphometric structures within 
estuarine fish populations. 
 
The simulation process begins with the 
calculation of the original data parameters from 
the measured morphometric traits (Rauf, et al., 
2024). Specifically, the means and covariance 
matrices are derived from the morphometric data 
of the 815 specimens collected across the 
sampling sites. The mean vector μ for each 
morphometric trait is calculated as follows: 
 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                 9 

 
where n is the total number of specimens, and xi 
represents the individual measurements for each 
trait. 
 
The covariance matrix Σ was computed to 
quantify the relationships between the traits, 
using the formula: 
 

𝛴 =
1

𝑛−1
∑ (𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇𝑛

𝑖=1            10 

 
where (xi−μ) is the deviation of each observation 
from the mean, and T denotes the transpose 
operation. This matrix captures how much the 
morphometric traits vary together. 
 
Using the mean vector 𝜇 and covariance matrix 
Σ, we generated synthetic datasets by drawing 
random samples from a multivariate normal 
distribution. This step, essential to the Monte 
Carlo process, requires a random number 
generator (RNG) to ensure variability in the 
generated samples. This RNG facilitates drawing 
values from the specified distribution, which 
mimics real-world sampling conditions and 
enables us to evaluate how variability might 
impact PCA and DFA results. Each generated 
synthetic dataset shared the same means and 
covariances as the original data, mathematically 
expressed as: 
 

𝑥𝑠𝑖𝑚 ∼ 𝑁(𝜇, 𝛴)              11 
 
where μ is the mean vector of the original data, Σ 
is the covariance matrix, and N denotes a 
multivariate normal distribution. In this study, 
1,000 synthetic datasets were generated, each 
representing plausible variations in sampling 
conditions. 
 
These synthetic datasets were then subjected to 
PCA and DFA to evaluate the consistency of trait 
differentiation under hypothetical sampling 
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conditions. For PCA, the covariance matrix was 
calculated as follows: 
 

𝐶 =
1

𝑛−1
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1 (𝑥𝑖 − 𝜇)𝑇           12 

 
where 𝑛 is the sample size, and 𝑥𝑖 represents 
individual sample vectors. We calculated the 
eigenvalues and eigenvectors of this covariance 
matrix to identify principal components, which 
capture the maximum variance within the data. 
 
For DFA, discriminant functions were derived 
using the means and covariances of each group 
to enable classification based on morphological 
traits. The discriminant function for group 𝑘 was 
defined as: 
 

𝐷𝑘(𝑥) = 𝑏𝑇
𝑘𝑥 + 𝑐𝑘             13 

 
where bk is the vector of coefficients derived from 
the means of the groups and ck is a constant 
term for group k (Daikwo, et al., 2016). The 
classification accuracy is then evaluated by 
applying the discriminant functions to the 
synthetic datasets. 
 
The outcomes were interpreted by examining the 
stability of principal components and discriminant 
functions across simulations. Consistency in 
these elements suggests that the morphometric 
patterns identified were likely genuine reflections 
of population structures, rather than statistical 
artifacts, thus supporting the reliability of the 
results (Fisher & Tipton, 2015). 
 

4.2 Graphical Representations 
 
To visually convey morphometric variation across 
different sampling sites, PCA and DFA plots were 
generated. These plots serve as graphical 
representations of the high-dimensional 
morphometric data reduced to two or three 
dimensions, providing intuitive insight into 
population structure and spatial morphometric 
differentiation (Jolliffe & Cadima, 2016). In PCA, 
each data point represents an individual fish, 
plotted based on its scores on the first few 
principal components, which capture the majority 
of morphometric variance. The spatial 
arrangement of points in PCA plots indicates the 
degree of morphological similarity or dissimilarity 
among individuals, with tighter clusters 
suggesting more homogenous populations, while 
dispersed points may imply diverse 
morphometric traits due to geographic or 
environmental influences. 

For DFA, scatter plots of the first two discriminant 
functions were employed to illustrate group 
separation. These plots provide visual           
evidence of DFA’s capacity to classify                     
fish populations by morphometric traits              
linked to specific sites, with clearer boundaries 
between clusters suggesting higher  
classification accuracy and better-defined group 
distinctions. 
 
The PCA plot highlights the primary axes of 
morphometric variation across populations, with 
component loadings indicating which traits most 
strongly differentiate groups. For example, 
elongation and body depth traits may load 
heavily on the first component if they contribute 
significantly to shape variation due to habitat 
adaptation. The DFA plot, on the other              
hand, serves as a visual confirmation of the 
model’s classification power, displaying the 
spatial separation of groups as a function of 
discriminant scores. Each cluster represents a 
sampling site or population, with minimal           
overlap indicating effective classification          
based on morphometric traits (Asuquo & Ifon, 
2022). 
 

4.3 Statistical analysis 
 
The statistical analyses and visualizations were 
conducted using Python (ver. 3.12.6) for 
windows.  
 

5. RESULTS 
 

5.1 Within-Group Morphometric Variation 
 
Principal Component Analysis (PCA) revealed 
that the first principal component (PC1) 
accounted for the majority of the variance, with 
an eigenvalue of 0.9158, representing 91.58% of 
the total variation (Fig. 2). This suggests that 
PC1 captures the primary differences between 
the fish samples. The second principal 
component (PC2) accounted for an additional 
3.66%, bringing the cumulative explained 
variance to 95.24%. As we move to the third 
through fifth components, the explained variance 
progressively decreased, reaching 98.94% by 
PC5. By PC11, 100% of the variance was 
explained, with the majority of variation 
concentrated in the first few components. These 
results indicate that focusing on PC1 and PC2 
can effectively summarize the variation in the 
dataset, allowing for a simplified analysis without 
significant loss of information. 
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5.2 Between-Group Variation 
 
Discriminant Function Analysis (DFA) showed 
clear morphological differentiation among the 
sampling stations. A 2-Dimensional DFA plot (Fig. 
3) revealed three distinct morphometric groups, 
with Station 1 (near the estuary mouth) clearly 
separating from the other stations (2–5), which 
are located farther inland. This suggests that the 
proximity to the Atlantic Ocean plays a significant 
role in shaping the fish's morphology. 
 
This plot shows the contribution of each principal 
component to the total variance, highlighting the 
main components that capture most of the 
morphological variation in the fish populations. 
 
This visualization indicates clear separation 
between groups, supporting the hypothesis of 

morphological differentiation due to 
environmental influences. Stations 1-5=Estuary 
Mouth, Great Kwa River Mouth, Oron         
Beach, Calabar River Mouth, and Itu Beach 
respectively 
 
The contour plot (Fig. 4) further demonstrated 
these patterns, with dense clusters of 
discriminant function scores at Stations 2–5, 
away from the oceanic influence. The color 
gradients in the plot (yellow for high-density 
areas and blue for low-density) highlighted the 
clustering of morphometric traits at each station, 
with Station 1 showing distinct traits from the 
other stations. The scatter plots (Fig. 5) of 
pairwise comparisons of key morphological traits 
confirmed these results, with Stations 2–5 
showing more overlap, indicating a similar 
morphological group. 

 

 
 

Fig. 2. Explained variance by principal components in the morphometric data set 
 

 
 

Fig. 3. Discriminant Function Analysis (DFA) plot displaying distinct morphological groupings 
among sampling stations 
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Fig. 4. Contour plot of discriminant function scores, indicating regions of low to high density 
across morphological groups 

 

 
 

Fig. 5. Pairwise scatter plots of morphological traits across stations, illustrating relationships 
and clustering patterns among key traits 

 
High-density regions, shown in yellow, represent 
areas where morphological traits are most similar 
within groups, aiding in the identification of 
morphological clustering patterns related to 
environmental conditions. 
 

These plots provide insight into how traits vary 
across groups and reveal overlapping and 
distinct areas, supporting morphological 
differentiation among sampling stations. Stations 
1-5=Estuary Mouth, Great Kwa River Mouth, 
Oron Beach, Calabar River Mouth, and Itu Beach 
respectively 
 

5.3 Classification Accuracy Assessment 
 

The DFA model's classification accuracy was 
evaluated using a 25% holdout set. The 

classification results, summarized in a confusion 
matrix (Table 2), indicated an overall accuracy of 
61.44%. This value reflects the proportion of 
correctly classified fish specimens, with Group 1 
and Group 4 showing higher classification 
accuracy. The individual group classification 
percentages highlighted variability, suggesting 
that some groups may have more distinguishing 
features than others. The Monte Carlo 
simulations (Fig. 6a) further illustrated that, under 
varying sampling conditions, the distinction 
between groups, particularly between Stations 2–
5, could become less pronounced. However, the 
results confirmed that the DFA model was able to 
reliably differentiate between the groups beyond 
what would be expected by random chance, as 
shown by the p-value of <0.001. 
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Table 2. Confusion Matrix for Classification Accuracy of the Validation Set 
 

  Membership   

S/N Station 1 2 3 4 5 Sum Correct (%) 
1 Estuary Mouth  35 0 0 0 0 35 100 
2 Great Kwa River Mouth 0 25 6 4 4 39 64.10 
3 Oron Beach 0 17 1 1 1 20 5.00 
4 Calabar River Mouth 0 2 0 24 5 31 77.42 
5 Itu Beach 0 4 0 15 9 28 32.14 
Total  35 48 7 44 19 153 100 

 

  
(a) (b) 

 
Fig. 6. Function plots comparing simulated data (a) and original data (b) to assess the 

robustness of DFA results 
 

5.4 Monte Carlo simulations 
 

The Monte Carlo simulations (Fig. 6a) evaluated 
the impact of sampling variability on the 
observed morphological distinctions. The 
simulations highlighted that, under certain 
sampling conditions, the differences between 
groups (Fig. 6b), especially among stations with 
similar environmental conditions, might be less 
pronounced. Nevertheless, these simulations 
also reaffirmed the robustness of the DFA 
results, suggesting that while sampling variability 
may influence the extent of morphological 
differentiation, the overall patterns remain 
significant. 
 

This figure shows how sampling variability could 
impact morphological group distinctions, with the 
original data indicating stronger group separation 
than the simulated data. Stations 1-5=Estuary 
Mouth, Great Kwa River Mouth, Oron Beach, 
Calabar River Mouth, and Itu Beach respectively 
 

6. DISCUSSION 
 

6.1 Size Adjusted Traits 
 

In this study, we applied an allometric scaling 
equation to adjust for size-related variability in 

morphometric data. Variations in size can 
confound the results in morphometric studies, as 
both shape and relative proportions of measured 
characters often scale with size (Reist, 1985). 
The allometric scaling approach allows for size-
independent comparisons of morphometric traits, 
facilitating more accurate shape-based 
assessments across different fish populations 
(Elliott, et al., 1995). By using this method, we 
were able to effectively normalize size 
differences, ensuring that shape differences were 
not masked by variations in body size. Size 
adjustment is critical in morphometric studies to 
avoid the influence of body size on the shape of 
fish. Previous studies have employed various 
methods for this purpose. For instance, Asuquo 
and Ifon (2019) used Schaefer’s (1992) 
approach and a modified version of Elliott et al.'s 
(1995) formula for size standardization in their 
study of P. elongatus. Asuquo and Ifon (2019) 
found that their method of size adjustment using 
the communal within-sample gradients effectively 
reduced size-related variance in their data. In 
contrast, our study opted for an allometric scaling 
equation based on total length as the standard 
size measure. The allometric scaling method 
used in the present study is consistent with other 
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shape-based morphometric studies and allows 
for comparisons across populations with varying 
body sizes without introducing redundancy or 
over-adjustment. 
 
The choice of size adjustment method is 
important for ensuring the accuracy of 
subsequent analyses. While both approaches 
effectively address size-related variability, our 
decision to use the allometric scaling equation 
was informed by the need for consistency with 
widely applied methods in the field of fish 
morphometrics. In this regard, our findings align 
with studies that utilize allometric scaling for size 
normalization, such as those by Elliott et al. 
(1995), who demonstrated its effectiveness in 
characterizing shape variations independent of 
size. Our study found that after size adjustment, 
significant differences in morphometric traits 
were observed between different populations of 
P. elongatus. These differences were consistent 
with findings by Asuquo and Ifon (2019), who 
reported significant variations in the body shapes 
of P. elongatus across different locations within 
the Cross River Estuary. However, unlike Asuquo 
and Ifon (2019), who used a pooled dataset, we 
performed a more rigorous comparison of 
individual measurements across samples. This 
enabled a finer level of analysis, which revealed 
subtle shape differences that might have been 
overlooked in studies with broader sample 
pooling. The use of size-adjusted traits in our 
study supports the idea that shape variations in 
P. elongatus are primarily influenced by 
environmental factors and not simply by size. As 
highlighted by Elliott et al. (1995), such size-
independent comparisons allow researchers to 
better understand the ecological and genetic 
factors influencing population structure and 
distribution. In our case, size adjustments 
revealed that environmental factors such as 
salinity gradients and tidal influences likely play a 
significant role in shaping the morphology of P. 
elongatus populations in the Cross River Estuary, 
consistent with the observations of Asuquo and 
Ifon (2019). 
 

6.2 Within-Group Morphometric Variation 
 
The results of the Principal Component Analysis 
(PCA) showed that the first principal component 
(PC1) explained 91.58% of the total variance, 
with the second principal component (PC2) 
accounting for an additional 3.66%, collectively 
explaining 95.24% of the variance. This high 
proportion of variance captured by PC1 and PC2 
aligns with findings from other studies 

investigating morphometric variations in fish 
populations. For example, Turan (2004) 
observed that PC1 accounted for approximately 
80% of variance in Sardina pilchardus, while 
Khan et al. (2012) reported that the first three 
components in Channa punctatus explained 
63.41% of total variation. These findings suggest 
a common pattern where the primary 
morphological differences in fish populations are 
concentrated in the first few components. A 
related study by Asuquo and Ifon (2019) on 
Pseudotolithus elongatus in the Cross River 
region found that PC1 and PC2 explained 85.6% 
and 11.3% of variance, respectively, indicating 
that most morphological distinctions were 
captured by the initial components. This is 
consistent with the present study, though our 
PC1 explains a slightly higher percentage, likely 
due to species-specific differences or 
methodological factors, such as sample size or 
measurement precision. 
 
Asuquo and Ifon (2021) also highlighted that 
Yakubu and Okunsebor (2011) preferred using 
the most discriminative character in PC2 to 
identify stock structure, as PC2 is less affected 
by fish size. However, the inclusion of variables 
from both PCs is supported in the current study 
due to the application of an allometric 
transformation (Elliott, et al., 1995) to minimize 
size-related variability. By addressing size effects 
through allometric scaling, the observed within-
group morphological variation is attributed to 
shape rather than ontogenetic growth patterns 
(Schaefer, 1992). This approach is also 
consistent with morphometric research that 
recommends size-standardization to avoid 
inflated variances arising from size overlaps 
among samples (Reist, 1985; Asuquo & Ifon, 
2019). Overall, the significant role of 
environmental factors in shaping morphological 
diversity is evident in this study, reinforcing 
findings from earlier research. 
 

6.3 Between-group Morphometric 
Variation 

 
The Discriminant Function Analysis (DFA) results 
revealed distinct morphological differentiation 
among the sampling stations, highlighting three 
morphologically distinct groups shaped by 
environmental gradients. Specifically, Station 1, 
located near the estuary mouth, exhibited clear 
separation from Stations 2–5, which are further 
inland and less affected by the direct 
oceanographic forces of the Atlantic. This pattern 
suggests that the morphological traits of 
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estuarine croaker populations are influenced by 
varying environmental conditions at different 
stations, consistent with studies on fish 
population structure and morphometric variation. 
 
For example, Telles et al. (2014) found similar 
differentiation in the Amazon Basin, where 
Pseudoplatystoma punctifer populations 
exhibited morphological and genetic divergence 
due to spatial constraints on gene flow. Although 
Telles et al. (2014) primarily examined genetic 
diversity, their findings highlighted how spatially 
structured dispersal and isolation-by-distance 
patterns affected genetic similarity, with 
populations up to 80 km apart showing more 
similarity than those further away. This localized 
structure suggests that environmental gradients, 
along with geographic isolation, can influence 
population differentiation. Analogous to our study, 
where distinct morphometric groups emerged 
along an estuarine gradient, Telles et al.’s work 
indicates that environmental factors such as 
salinity, temperature, and substrate type may 
drive morphological divergence in spatially 
structured populations. In contrast, Asuquo and 
Asangusung (2019) found minimal morphometric 
differentiation among Chrysichthys nigrodigitatus 
populations across closely situated rivers on 
Nigeria’s southern coast. Their findings, which 
align with the isolation-by-distance model (Smith 
& Weissman, 2023), indicated limited 
morphometric variation due to stable 
environmental conditions. This differs from our 
study’s marked morphometric differentiation 
along an estuarine gradient, where sharp 
environmental variations likely drive distinct 
morphological traits, particularly between the 
estuary mouth (Station 1) and more inland 
stations. 
 
Asuquo and Ifon (2021) similarly highlighted 
morphometric disparities in P. elongatus 
populations at island and estuary mouth 
locations, suggesting that geographic separation 
and environmental variation within estuaries 
contribute to distinct morphometric traits. This 
aligns with the morphometric divergence 
observed in our study, where environmental 
gradients such as salinity and substrate type 
create distinct groups. Further molecular 
analyses, as suggested by Asuquo and Ifon, 
could confirm whether these morphological 
differences indicate potential genetic divergence 
as well. The clustering patterns in contour plots 
support these findings, with stations displaying 
similar environmental conditions showing 
overlapping morphometric traits. The clustering 

reinforces the role of environmental gradients in 
shaping morphological differentiation, consistent 
with the ecological impact of estuarine variation 
on fish morphology (Wang & Bradburd, 2014). 
 

6.4 Classification Accuracy Assessment 
 
The discriminant function analysis (DFA) in the 
present study achieved a classification accuracy 
of 61.44%, indicating the proportion of African 
croaker specimens accurately classified into 
morphological groups based on environmental 
variations across sampling stations. This 
moderate accuracy aligns with previous studies 
using DFA to classify fish specimens by 
morphological characteristics, where 
environmental factors often influence 
classification precision. For instance, Kumari et 
al. (2020) reported a classification accuracy of 
66.8% in a study of congeneric sciaenid species, 
attributing variations in accuracy to the number of 
discriminating traits and the environmental 
homogeneity of the sampling areas. The higher 
accuracy observed in Kumari et al. (2020) 
suggests that homogeneous environments 
contribute to clearer group differentiation, while in 
heterogeneous environments like the estuarine 
setting of the current study, ecological complexity 
can result in overlapping morphological traits and 
lower classification accuracy. 
 
Similarly, Mendoza-Barrera et al. (2018).  
achieved a 66.25% classification accuracy for the 
red snapper (Lutjanus campechanus) 
populations in the Southern Gulf of Mexico, likely 
due to stronger environmental gradients that 
more distinctly separated coastal groups. In 
contrast, the more subtle morphological 
differences among African croaker populations in 
this study may have contributed to the lower 
classification accuracy, highlighting the nuanced 
influence of environmental variability on 
morphological differentiation. The present study’s 
accuracy of 61.44% falls within the range 
commonly observed in DFA applications, 
underscoring the variability in morphological 
traits due to environmental factors and the 
challenges inherent in distinguishing groups 
under similar ecological conditions. This 
accuracy suggests that refining discriminating 
variables or adopting improved sampling 
strategies could potentially enhance classification 
precision in future studies. 
 
Asuquo and Ifon (2021) achieved a slightly 
higher classification accuracy of 66.0% for 
African croaker, noting that estuary mouth 
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samples were correctly classified without 
misclassification into island samples. They 
attributed classification accuracy differences 
between studies to potential errors due to 
parallax in traditional measurements, although 
they minimized instrument error by maintaining 
consistency in measurement procedures. 
Additionally, Asuquo and Ifon (2019) previously 
reported a 77.5% classification accuracy for bobo 
croaker in the Cross River Estuary, which Zhang 
et al. (2020) suggests could reflect the influence 
of different sampling sizes. Individual group 
classification accuracy varied within the present 
study, with Groups 1 and 4 showing higher 
classification rates than other groups. This 
pattern resembles Yakubu and Okunsebor 
(2011), who found that groups with more distinct 
morphological traits (e.g., body size or fin 
morphology) demonstrated higher classification 
accuracy. In this study, such variation 
emphasizes that groups with subtle 
morphological differences are more challenging 
to classify accurately, reaffirming the importance 
of selecting robust discriminating traits to 
improve DFA model performance. 
 

6.5 Monte Carlo Simulations 
 
The Monte Carlo simulations conducted in this 
study provided valuable insights into the 
robustness of the Discriminant Function Analysis 
(DFA) results and the impact of sampling 
variability on observed morphological 
distinctions. These simulations revealed that 
under different sampling conditions, particularly 
at stations with similar environmental contexts 
(such as Stations 2–5), the groupings observed 
in the DFA could become less pronounced, 
highlighting the influence of sampling variability 
on the clarity of morphological differentiation. 
Mode and Gallop (2007) emphasize the 
importance of transparency and reproducibility in 
Monte Carlo simulations, noting that clear 
documentation of underlying mathematics and 
simulation parameters allows other researchers 
to replicate results accurately. Following their 
recommendations, we ensured that the random 
number generator and the sampling parameters 
used in this study were clearly specified, 
enhancing the transparency and reproducibility of 
our approach. Mode and Gallop (2007) also point 
out that rigorously selected random number 
generators can ensure the independence             
of generated samples, a factor that is           
critical in morphometric studies where sampling 
variability can easily introduce unintended 
biases. 

Our approach aligns with the insights of Cadrin 
and Friedland (1999), who describe the 
application of advanced morphometric 
techniques, such as image analysis systems and 
landmark-based morphometry, to improve stock 
identification by capturing and analyzing shape 
variations with increased accuracy. They 
observed that traditional morphometrics, even 
when effective, benefited significantly from 
enhancements in image processing and 
geometric morphometrics, allowing for a more 
comprehensive and precise representation of 
morphological differences. This aligns with our 
findings, where DFA robustness was impacted by 
sampling variability but still retained detectable 
structure under realistic environmental 
conditions. Our simulations extend these 
morphometric principles by ensuring clarity and 
precision in the observed groupings even under 
fluctuating environmental contexts, providing a 
similar advantage in accurately distinguishing 
morphological traits. 
 
Furthermore, Mode and Gallop (2007) highlight 
the relevance of simulating complex systems 
with variable conditions, a concept applicable 
here as morphometric group clarity varies with 
environmental context. Our simulations 
incorporate these principles, reinforcing our 
DFA's robustness under realistic conditions of 
environmental variability. This approach is 
consistent with Basson (2002), who discusses 
the use of simulation approaches, specifically 
Management Strategy Evaluation (MSE), for 
evaluating robustness in complex systems under 
uncertainty. While MSE typically applies to 
fisheries management, Basson’s focus on 
simulating different scenarios to test decision 
frameworks under varying conditions is 
conceptually similar to our simulations, where we 
evaluate the robustness of DFA results across 
varying environmental and sampling conditions. 
 
Bresnahan and Jamison (2007) further 
demonstrate that Monte Carlo simulations can 
reveal biases across sample sizes, noting that 
smaller sample sizes often lead to increased 
variability and bias. Applying these insights to our 
study, smaller sample sizes and increased 
sampling variability may have impacted the 
clarity of morphological distinctions at certain 
stations, as observed in our simulations. Their 
findings emphasize the importance of using 
sufficiently large sample sizes and robust 
estimation methods to minimize variability and 
improve classification accuracy in morphometric 
studies. The robustness of our DFA model, as 
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confirmed by these simulations, is consistent with 
Zhang et al. (2020), who found that despite 
smaller sample sizes or highly variable 
environmental gradients, the main structure of 
morphological groups generally remained 
identifiable. This trend reinforces that while 
sample variability can blur group distinctions, the 
overall group structure in DFA remains 
detectable, lending further credibility to our 
results. Insights of Mode and Gallop (2007) on 
maintaining a robust simulation framework 
underlie our approach, further validating our 
Monte Carlo-based findings in assessing the 
robustness of morphological classifications under 
variable sampling scenarios (Ferrito, et al., 
2007). 
 

7. CONCLUSION 
 
This study highlights the significant impact of 
environmental gradients on morphological 
variation within estuarine croaker populations in 
the Cross River Estuary. Multivariate analysis 
revealed distinct morphological groupings, 
especially between the estuary mouth, influenced 
by Atlantic oceanographic forces, and more 
inland stations. While classification accuracy in 
the original model was moderate, simulations 
underscored how sampling variability affects 
results, particularly in areas with minor 
environmental contrasts. These findings suggest 
the need for management strategies that 
consider local environmental differences, 
providing essential guidance for effective 
fisheries management and conservation in 
diverse estuarine ecosystems. Further meristic 
and genetic studies in combination with 
morphometrics are needed to fully discriminate 
stocks at scales that are not detected by the 11 
morphometric variables used in the present 
study. 
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