
________________________________________ 
 
*Corresponding author: Email: ibrahima@custech.edu.ng; 

 

Cite as: Ibrahim, Aminu, Rasheed A. Adeyemi, Abubakar Usman, and Nasiru U. Adabara. 2025. “Weighted Random Effects Multinomial 
Model With Application to Anaemia and Malnutrition Comorbidity Among under Five Children in Nigeria”. Asian Journal of Probability 

and Statistics 27 (1):29-42. https://doi.org/10.9734/ajpas/2025/v27i1701. 

 

 
 

 

Asian Journal of Probability and Statistics 

 
Volume 27, Issue 1, Page 29-42, 2025; Article no.AJPAS.128912 
ISSN: 2582-0230 

 

 
______________________________________________________________________________________________________________________________________________________ 

 

Weighted Random Effects Multinomial 

Model with Application to Anaemia and 

Malnutrition Comorbidity among under 

Five Children in Nigeria 
 

Aminu Ibrahim a*, Rasheed A. Adeyemi b, Abubakar Usman c  

and Nasiru U. Adabara c 
 

a Department of Statistics, Confluence University of Science and Technology Osara, Kogi State, Nigeria. 
b Department of Statistics, Federal University of Technology, Minna, Nigeria. 

c Department of Microbiology, Federal University of Technology, Minna, Nigeria. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/ajpas/2025/v27i1701 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/128912 

 

 

Received: 15/10/2024 

Accepted: 20/12/2024 

Published: 03/01/2025 

__________________________________________________________________________________ 
 

Abstract 

 
This study develops multinomial models with weighted random effects to analyze the spatial pattern and risk 

factors associated with anemia, malnutrition, and their co-occurrence among children under the age of five in 

Nigeria. A Bayesian hierarchical multinomial model with weighted random effects and adjusted Intrinsic 

Conditional Autoregressive (ICAR) prior for the random effects, was used to account for the comorbid 

patterns of anemia and malnutrition among young children in Nigeria. The study utilized data from the 2018 
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Demographic and Health Survey. The structured random effects were weighted to reflect state-level variation 

in precipitation, a climatic factor considered to influence child health outcomes. The results of fixed effects 

indicated that area of residence, maternal education level, and household wealth status were significant 

predictors of anemia and malnutrition co-occurrence. The generated map identified the north eastern region 

of the country with low average precipitation as a high-risk region for anemia and malnutrition co-morbidity. 

These findings emphasize the need for targeted interventions to mitigate precipitation-related health risks and 

public health campaigns focusing on maternal education on child nutrition, hygiene, and disease prevention. 

 

 

Keywords: Anemia, malnutrition, weighted random effects, multinomial model, precipitation, risk factors. 

 

1 Introduction 
 

Anemia is a serious global public health issue that disproportionately affect young children, particularly those 

under the age of five and pregnant women. According to the WHO, 40% of children aged 6-59 months and 37% 

of pregnant women worldwide are affected by anemia (WHO, 2019). These populations are especially 

vulnerable to the consequences of this condition. 

 

the prevalence of childhood anemia is highest in sub-Saharan Africa, where it affects approximately 67% of 

children, followed closely by South East Asia, with a prevalence of 65.5%, indicating a significant burden on 

public health in these regions (Roberts and Zewotir, 2019). Nigeria is unfortunately at the forefront of a 

significant public health problem, with anemia affecting a large proportion of its population (Bolaji et. al 2021, 

Adebayo et. al 2016). According to the World Health Organization, over 40% of the population suffers from 

anemia (NPC and ICF, 2019). This staggering figure is further reflected in the alarming rates of anemia among 

specific groups: 71% among children under the age of 5, 47.3% among non-pregnant women aged 15 to 49, and 

57.5% among pregnant women (Esteban 2021).  A 2018 Nigeria Demographic Health Survey revealed that 

anemia among children between the ages of 6 and 59 months was also alarmingly high in the country. Nearly 

70% of these children were affected, with mild anemia impacting 27%, moderate anemia affecting 38%, and 

severe anemia afflicting 3% (NDHS, 2018). The World Health Organization deems any prevalence of anemia 

above 40% among this age group to be a severe public health problem, emphasizing the critical need for 

interventions to address this issue (WHO,2022).  The geographical variation in the prevalence and etiology of 

anemia is partially explained by environmental factors that vary across different regions. These environmental 

factors, such as temperature, as altitude, land surface temperature, are known to cluster geographically and have 

been linked to the risk of anemia (Kandala, 2011). For instance, malaria, which is a well-known cause of 

anemia, is more prevalent in regions with specific environmental conditions. Similarly, dietary iron deficiency 

and anemia-causing helminthic infections are also influenced by environmental factors, which in turn affects the 

prevalence of anemia in different regions (Adebayo, 2016). Also, in sub-Saharan Africa, childhood malnutrition 

continues to pose a significant challenge to public health. Malnutrition in children is a significant risk factor for 

illness, as it weakens the immune system and makes children more vulnerable to diseases. This situation 

presents a significant challenge for healthcare systems, as it exacerbates the health problems that children in the 

region already face, such as infectious diseases and poor access to healthcare services (Osafu, 2021). Based on 

the children's weight, height, and age indices, malnutrition in children is categorized as stunting, wasting, and 

underweight. Children are considered stunted if their height-for-age z-score (HAZ) is less than negative two 

standard deviations (−2SD) from the median of the World Health Organization's (WHO) Child Growth 

Standards (WCGSM). Weight-for-age z-scores (WAZ) less than −2SD from the reference median indicate 

underweight, while weight-for-height z-scores (WHZ) less than −2SD from the reference median indicate 

wasting (UNICEF 2019, Gayawan et al, 2019). 

 

Malnutrition and anemia are related conditions that have a major effect on children’s growth, development, and 

general health, especially in developing countries (Adeyemi et al., 2019). Anemia and malnutrition work in 

tandem because they both make the other worse. Iron, vitamin B12, and folate deficiencies are caused by 

malnutrition and are necessary for the synthesis of red blood cells. As a result, anemia may result. In a similar 

vein, anemia, especially iron-deficiency anemia, can exacerbate malnutrition by affecting the metabolism and 

absorption of nutrients. Furthermore, the joint impact of both disorders on immunological response and physical 

and mental growth is more detrimental than either illness alone. A more comprehensive knowledge of the 

intricate relationships between anemia and malnutrition is possible when these two disorders are studied 
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together. It makes it possible to find risk factors and common predictors, which can enhance the creation of 

focused solutions. For example, since it targets the interrelated pathways that sustain this dual burden, treating 

both illnesses concurrently in intervention programs may be more effective than treating them separately. A 

useful technique for identifying regions with high disease burden is the visualization of the spatial distribution 

of anemia and malnutrition in disease risk maps. By mapping these health outcomes, we can identify hotspots 

and geographic clusters where they are prevalent. This visualization helps to reveal patterns that may be linked 

to environmental, socioeconomic, climatic and healthcare access factors unique to specific regions. 
 

For decades, a variety of studies have been conducted to gain a better understanding of the spatial distribution of 

anaemia and malnutrition among children under the age of five in regions of sub-Saharan Africa where the 

condition is very prevalent (Chuang et al 2019; Petry et al 2016; Kinyoki et al 2016; Takele et al 2020; Kinyoki 

et al 2018; Fagbohungbe et al 2020 and Aminu et al., 2024). In order to assess the combined spatial distributions 

of anemia and malnutrition among children in Mozambique and Burkina Faso, Adeyemi et al. (2019) used a 

generalized model and discovered evidence of the co-occurrence of malnutrition and anemia.  
 

In order to ascertain the spatial patterns of undernutrition quantiles among Nigerian children under five, 

Gayawan et al. (2019) employed Bayesian quantile regression. In order to measure the impact of Carbon (IV) 

Oxide concentration on undernutrition among children under five in Nigeria, Osafu et al. (2021) employed a 

generalized linear mixed model. Their research revealed a strong relationship between increased CO2 

concentration and a higher incidence of undernutrition in Nigeria. 
 

Using data from the 2010 Malawi demographic healthy survey, Ngwira and Kezembe (2015) implemented a 

Bayesian random effect model for child anemia, with district serving as a spatial effect. A binary logistic model 

was fitted to account for the two types of outcomes: anemia (Hb < 11) and no anemia (Hb ≥ 11). Based on their 

results, it was recommended that pediatric anemia control techniques be customized to the local environment, 

taking into account the unique causes and prevalence of anemia.  
 

Bilal et al. (2022) used a Bayesian Geostatistical technique to examine the anemia risk factors in Ethiopian 

preschoolers. The risk factors for anemia that were found were increased fertility, childhood malnutrition, 

maternal anemia, and low socioeconomic status. In the Namutumba district of Uganda, Kuziga et al. (2017) 

investigated the prevalence of childhood anemia and the contributing factors. After conducting a household 

survey in 376 randomly chosen households, the researchers discovered that the prevalence of anemia was high 

(58.8%), with males (61.3%) and children between the ages of 12 and 23 months (68.5%) having the highest 

rates. The necessity of funding initiatives to prevent anemia was underlined in light of their research findings. 

Most of the past studies on anemia and malnutrition among young children in Nigeria focused on the risk factors 

and spatial distribution of these health conditions on individual basis (Ngwira and Kazembe 2016; Ozoka 2018; 

Yang et al. 2018; Kandala et al. 2009; Khan and Mohanty 2018 and Gayawan et al. 2016). But these diseases 

exhibit comorbidity as they epidemiologically overlap. Also, the influence of variation in precipitation in the 

risk of anemia and malnutrition comorbidity have not been previously studied to the best of our knowledge.  

Regional precipitation affects child health outcome, weighting the spatial structured random effects with the 

average cluster precipitation of each state will further enhance the model and gives us insight about how the 

responses vary according to variation in precipitation across the geographical locations. 
 

 
 

Fig. 1. State average spatial distribution of precipitation in Nigeria 
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The developed weighted model will be compared with unweighted model incorporating only structured spatial 

effects, unstructured spatial effects or both in order to determine how the model better capture the association 

between the response variables and the risk factors. 

 

2 Methodology 
 

The data used for this study are sourced from the 2018 Nigeria Demographic and Health Survey. The climate 

variable data was obtained from the DHS spatial data repository. We used the results of anaemia and 

malnutrition status of children below the age of five years. A child is considered anaemic if the result of anemia 

test shows mild, moderate or serious anaemia status. Precisely, a child is positive to anemia if the hemoglobin 

(Hb) level is less than 11g/dl after adjustment for altitude is made.  A child is malnourished if the result shows 

stunting, wasting or underweight status. Each anaemia and malnutrition have binary status. The covariates 

(independent variables or risk factors) examined in this study are child’s gender, child’s age in months and 

mother’s age in years, area of residence, mother’s economic status measured in terms of wealth index, state of 

residence and average cluster precipitation of each state. Formulated models will be compared using the 

Deviance Information Criterion (DIC). The model with least value of DIC is consider the best fit (Spiegelhalter, 

2002). ICAR prior will be used for structure random effects of the unweighted model while the weighted 

structure random effect will be assigned the adjusted ICAR prior.  

 

2.1 Formulation of spatially weighted multinomial model 
 

Let 𝑌𝑗 be a vector of categorical response variable capable of taking any of 𝑘 categories: {1,  2,    .    .    . 𝑘}. A 

vector of predictor variables 𝑋𝑗 = (𝑥𝑗1,  𝑥𝑗2,    .   .   .  𝑥𝑗𝑝)𝑇 is defined for each 𝑗𝑡ℎ observation. The probability that 

the  𝑗𝑡ℎ observation belongs to category 𝑟 is given as  

 

𝑝𝑗𝑟 = 𝑃(𝑌𝑗 = 𝑟|𝑋𝑗)                                                                                                                                                  (1) 

 

a linear predictor 𝜂̃𝑗𝑟 is defined for each category 𝑟 as   

 

𝜂̃𝑗𝑟 = 𝑋𝑇𝜁𝑟                                                                                                                                                                  (2) 

 

The relationship between the linear predictors and the probabilities is specified by the multinomial model as 

 

𝑝𝑗𝑟 =
exp (𝜂̃𝑗𝑟)

(∑ exp (𝑘
𝑠=1 𝜂̃𝑖𝑠)

                                                                                                                                           (3)  

Given 𝑐 as the reference category exp(𝜂̃𝑗𝑐) = 1, the probabilities of an observation belonging to r category 

relative to reference category are 

 

𝑝𝑗𝑟 =
exp (𝜂̃𝑗𝑟)

1 + (∑ exp (𝑘−1
𝑠=1 𝜂̃𝑖𝑠)

                                                                                                                                   (4) 

 

𝑝𝑗𝑐 =
1

1 + (∑ exp (𝑘−1
𝑠=1 𝜂̃𝑖𝑠)

                                                                                                                                   (5) 

 

The log-odds ratio for category 𝑟 relative to the reference category 𝑐 is: 

 

log (
𝑝𝑗𝑟

𝑝𝑖𝑐

) = 𝜂̃𝑗𝑟                                                                                                                                                         (6) 

 

log (
𝑝𝑗𝑟

𝑝𝑖𝑐

) = 𝑋𝑇𝜁𝑟                                                                                                                                                     (7) 

 

With all the categories combined, the multinomial model can be expressed  for 𝑟 = 1,   2,    .    .    .     𝑘 − 1, and 

for 𝑐 category respectively as 
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𝑝𝑗𝑟 =
exp (𝑋𝑇𝜁𝑟 )

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠  )

                                                                                                                               (8) 

 

       𝑝𝑗𝑐 =
1

1 + (∑ 𝑒𝑥𝑝 (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠  )

                                                                                                                        (9) 

 

Incorporating the linear predictor 𝜂̃𝑖𝑗𝑟 = 𝑋𝑇𝛽𝑟 + 𝑢𝑖𝑠_𝑠𝑡𝑟
+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟

 which represents the spatial components into 

(8), we define the spatial multinomial model as: 

 

𝑝𝑖𝑗𝑟 =
exp (𝑋𝑇𝜁𝑟  + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑟_𝑢𝑛𝑠𝑡𝑟
)

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠  + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟
)

                                                                                      (10) 

 

For the reference category 

 

𝑝𝑖𝑐 =
1

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠  + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟
)

                                                                                        (11) 

 

To further extend the spatial multinomial model, we introduce a weighting factor 𝜔𝑠𝑖  and a coefficient 𝛾. The 

linear predictor is then modified to include interaction term as given below 

 

𝜂̃𝑖𝑗𝑟 = 𝑋𝑇𝜁𝑟  + 𝑢𝑖𝑟_𝑠𝑡𝑟
+ 𝑣𝑖𝑟_𝑢𝑛𝑠𝑡𝑟

+  𝛾𝜔𝑠𝑖𝑢𝑖𝑟_𝑠𝑡𝑟
                                                                                             (12) 

 

Incorporating the weighting factor into (10) we have a spatially weighted multinomial model given below 

 

𝑝𝑖𝑗𝑟 =
exp (𝑋𝑇𝜁𝑟  + 𝑢𝑖𝑟_𝑠𝑡𝑟

+ 𝑣𝑖𝑠𝑢𝑛𝑠𝑡𝑟
+  𝛾𝜔𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟

)

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠  + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟
+  𝛾𝜔𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟

)
                                                            (13) 

 

the reference category is expressed as  

 

𝑝𝑖𝑗𝑐 =
1

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠 + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟
+  𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟

)
                                                             (14)  

 

the following flexible models are formulated and incorporated into (8), (10) and (13)  

 

Model 1,  𝜂̃𝑟 = 𝑥𝑇𝜁𝑟   

Model 2,  𝜂̃𝑟 = 𝑥𝑇𝜁𝑟   + 𝑔(𝑧𝑖) 

Model 3, 𝜂̃𝑟 = 𝑥𝑇𝜁𝑟  + 𝑢𝑖𝑠_𝑠𝑡𝑟
 

Model 4, 𝜂̃𝑟 = 𝑥𝑇𝜁𝑟 +  𝑔(𝑧𝑖) + 𝑢𝑖𝑠_𝑠𝑡𝑟
 

Model 5,  𝜂̃𝑟 =  𝑥𝑇𝜁𝑟 + 𝑔(𝑧𝑖) + 𝑢𝑖𝑠_𝑠𝑡𝑟
+ 𝑣𝑖𝑗𝑢𝑛𝑠𝑡𝑟

 

Model 6, 𝜂̃𝑟 = 𝑥𝑇𝜁𝑟 +    𝑔(𝑧𝑖) + 𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟
  

Model 7,  𝜂̃𝑟 =  𝑥𝑇𝜁𝑟 + 𝑔(𝑧𝑖) + 𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟
+ 𝑣𝑖𝑗𝑢𝑛𝑠𝑡𝑟

                                                                           (15) 

 

 𝑥𝑇𝜁𝑟  is a vector of categorical covariate effects with its coefficient  

 

(𝑔(𝑧𝑖) denotes the estimate of the nonlinear smoothing effects of the metrical covariates  

 

 𝑢𝑖𝑟_𝑠𝑡𝑟
  and 𝑣𝑖𝑟_𝑢𝑛𝑠𝑡𝑟

 is the structured spatial components and unstructured (spatially uncorrelated) component  

𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟
 denotes the structured spatial effects with spatially weighting factors 𝛾𝜉𝑠𝑖. 

 

𝑌𝑗~𝑀𝑁(𝑟,   𝜋),   𝑗 = 1,  2,   .   .   .  𝑛,   𝑟 = 1,  2,    .   .  k,    𝑛 = 10988.  

 

A child's sickness status of anemia and malnutrition, designated as 𝑌𝑗 is further divided into four categories as 

shown below in order to apply a multinomial model to the data. 
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𝑌𝑗 = 𝑟 = {

1
2
3
4

                             if a child is free from both anemia and malnutrition
 if a child has malnutrition only

    if  a child has Anaemia only
                            if a child has both anaemia and malnutrition

 

 

2.2 Assignment of priors for the spatial components 
 

The unweighted structured spatial effects are assigned ICAR prior as given below 

 

𝑢𝑠𝑖|𝑢𝑠−1
~𝑁 (

1

𝑛𝑖

∑ 𝑢𝑠𝑖 ,

𝑠𝑖~𝑠−1

𝜎2

𝑛𝑖

)                                                                                                                          (17) 

 

The spatially weighted effect is assigned a modified ICAR prior  

 

𝑢𝑠𝑖|𝑢𝑠−1
~𝑁 (

1

∑ 𝜉𝑠𝑖𝑖~𝑠−1

∑ 𝜉𝑠𝑖𝑢𝑠𝑖
𝑠𝑖~𝑠−1

,   
𝜎2

 ∑ 𝜉𝑠𝑖𝑖~𝑠−1

)                                                                                 (18) 

 

The unstructured or uncorrelated component is assigned normal prior as given below 

 

𝑣𝑖  ~ 𝑁(0,  𝜎𝑣
2)                                                                                                                                                        (19 ) 

 

𝑢𝑠𝑖  is the structured random effects for state i.   𝑢𝑠−1
is the structure random effects for all states except state i 

𝑛𝑖 is the number of neigbouring location for state 𝑠𝑖 ,   
1

∑ 𝜉𝑠𝑖𝑖~𝑠−1

∑ 𝜉𝑠𝑖𝑢𝑠𝑖𝑠𝑖~𝑠−1
 represents the weighted mean of 

the spatial random effects of the neighbors of 𝑠𝑖 ,   
 

 
𝜎2

 ∑ 𝜉𝑠𝑖𝑖~𝑠−1

 represents the variance of the spatial random effect for 𝑠𝑖 adjusted by the sum of the weights. 

 

For n number of observation, the joint likelihood is given as  

 

𝐿(𝑌|𝜂) = ∏ ∏ (
exp (𝑋𝑇𝜁𝑟  + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠𝑢𝑛𝑠𝑡𝑟
+  𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟

)

1 + (∑ exp (𝑘−1
𝑠=1 𝑋𝑇𝜁𝑠 + 𝑢𝑖𝑠_𝑠𝑡𝑟

+ 𝑣𝑖𝑠_𝑢𝑛𝑠𝑡𝑟
+  𝛾𝜉𝑠𝑖𝑢𝑖𝑠_𝑠𝑡𝑟

)
)

𝐼(𝑌𝑖=𝐾)

   

𝐾

𝑟=1

              (20)
𝑛

𝑖=1
 

 

The posterior distribution combines the likelihood and the priors using Bayes' theorem: 

 

𝑝(𝛼,  𝜁,  𝛾,  𝑣,  𝑢|𝑌, 𝑋, 𝑍) ∝ 𝐿(𝑌|𝜂) .  𝑃(𝛼) .  𝑃(𝜁) . 𝑃(𝛾) .  𝑃(𝑢) .  𝑃(𝑣)                                                    (21) 

 

Where;  

 

𝐿(𝑌|𝜂)  is the likelihood 𝑃(𝛼) = ∏ 𝑁(𝛼𝑘|0.  𝜎𝛼
2)𝐾

𝑟=1 ,   𝑃(𝛽) = ∏ 𝑁(𝜁𝑘|0.  𝜎𝜁
2𝐼)𝐾

𝑟=1 ,    𝑃(𝛾) =

∏ 𝑁(𝛾𝑘|0.  𝜎𝛾
2𝐼)𝐾

𝑟=1 ,    

 

𝑃(𝑣) = ∏ 𝑁(𝑣𝑘|0.  𝜎𝑣
2𝐼)

𝐾

𝑟=1
 

𝑃(𝑢) = ∏ ∏ 𝑁

𝑆

𝑠=

𝑛

𝑖=1
(

1

𝑛𝑖

∑ 𝑢𝑠𝑖 ,

𝑠𝑖~𝑠−1

𝜎2

𝑛𝑖
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3 Results and Discussion 
 

Table 1 shows that out of 10171 children below the age of five considered, 2167 representing 21.3% are free of 

Anemia or malnutrition, 1007 ((9.9%) suffered from anemia only, 3855 (37.9 %) are malnourished only while 

3142 (30.9 %) suffered from both anaemia and malnutrition.  

 

Table 1. Descriptive characteristics of the response variables and their covariates 

 

Variables None Anemia 

only  

Malnutrition 

only 

Anaemia and 

malnutrion 

Total 

Sex 

        Male 

        Female 

 

1037 

1130 

 

481 

526 

 

1934 

1921 

 

1699 

1443 

 

5151 

5020 

Residence 

        Urban 

        Rural 

 

1132 

1035 

 

360 

647 

 

1622 

2233 

 

846 

2296 

 

3960 

6211 

Working Status 

        No  

        Yes 

 

1624 

543 

 

708 

299 

 

2805 

1050 

 

2061 

1081 

 

7198 

2973 

Educational level 

        No education 

        Primary 

        Secondary 

        Tertiary  

 

468 

317 

983 

399 

 

471 

184 

288 

64 

 

1126 

715 

1666 

348 

 

1825 

514 

 706 

97 

 

3890 

1730 

643 

908 

Fever status 

        Yes 

        No 

 

1769 

398 

  

764 

243 

 

2813 

1042 

 

2054 

1088 

 

7400 

2771 

Diarrhea 

       Yes 

        No 

 

162 

2005 

 

159 

848 

 

435 

3420 

 

586 

2556 

 

1342 

8829 

Electricity 

        Yes 

        No 

 

1437  

730 

 

541 

466 

 

2106 

1749 

 

1254 

1888 

 

5338 

4833 

Geo-Zone 

       North Central 

        North East 

        North West  

        South East 

        South South 

        South West 

 

456 

307 

314 

358 

267 

465 

 

149 

243 

365 

84 

49 

117 

 

767 

493 

610 

792 

578 

615 

 

406 

779 

1170 

258 

250 

279 

 

1778 

1822 

2459 

1492 

1144 

1476 

Wealth Index 

        Poorest 

        Poorer 

        Middle 

        Richer 

        Richest 

 

203 

285 

450 

563 

666 

 

215 

211 

278 

173 

130 

 

605 

698 

877 

976 

699 

 

1019 

839 

639 

428 

217 

 

2042 

2033 

2244 

2140 

1712 

Own mosquito bed net 

        No 

        Yes 

 

790 

1377 

 

290 

717 

 

1323 

2532 

 

789 

2353 

 

3192 

6979 

 

50.6% of the children are male while 40.6 are female. A larger percentage of the children considered (61%) are 

from rural area. Only 29% of the children’s mothers are working. As regards the educational qualification of the 

mothers, 38% have no formal education, 17 % has primary education, 36 % has secondary education while only 

9% has Higher or tertiary education. 73% and 13% of the children experience fever and diarrhea respectively 

two weeks prior to the survey. Geo-political distribution of the data shows that North West and South South 

respectively have the highest and lowest number of children who participated in the Survey. 68% of the 
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household own mosquito bed net. Regarding the economic status of the parent, 20%, 20%, 22%, 21% and 17 

percent respectively belong to poorest, poorer, middle, richer and riches categories. The table also reveals that 

52% of the households have electricity. 

 

Table 2 shows the model diagnostic statistics. Seven models were formulated which are subset of fixed, metrical 

and spatial covariates. Model one contains only the fixed effects covariates.  Model 2 expands on Model 1 by 

including metrical (continuous) covariates alongside the fixed effects. model three incorporates the structured 

random effects to the fixed covariates accounting for spatial variation. Model four contains fixed effects 

covariates, metrical covariates, and the structured random effects. Model five builds on Model 4 by adding 

unstructured random effects, allowing for both structured spatial variations and individual-level random 

variations. Model six incorporate average cluster precipitation as weighting effects to the structured random 

effects to reflect potential regional disparities in climate in addition to fixed and metrical covariates while model 

seven added the unstructured or area specific random effects to model six. The model with the lowest value of 

DIC is considered as the best fitted model. Models with weighted structured random effects have lower values 

of DIC suggesting that weighted random effects model have more improved explanation of the risk of disease 

comorbidity compared to unweighted model. However, model six has the least value of defiance criterion and it 

is considered as the best model to capture the variation in our data. The further analysis is based on the best 

fitted model. 

 

Table 2. Values of the model diagnostic criterion 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

𝑫̅ 24502.963 23989.63 23779.843 23264.297 23254.811 23264.175 23255.089 

𝝆𝑫 44.601 74.995 133.340 163.26632 164.751 162.231 163.353 

𝑫𝑰𝑪 24592.164 24139.617 24046.561 23590.83 23594.313 23588.863 23591.795 

 

Table 3 presents the posterior Mean estimates of the fixed effects of demographic characteristics, environmental 

and socioeconomic risk factors of the comorbidity of anaemia and malnutrition using multinomial model with 

structured weighted random effects.  the results contains 95 % credible interval which is used to determine the 

significance of the risk factors. The risk factors are considered as not statistically significant if the credible 

interval includes zero. Based on the results, female children have a reduced risk of being malnourished or 

anemic and comorbidity of both illnesses compared to male children. The results also reveal that child sex is not 

a significant risk factor for malnutrition but significant for anaemia and coexistence of anaemia and 

malnutrition. Children in rural area has a higher odd of illness compared to their counterparts in urban 

settlement. This covariate is only significant for anaemia. The results also shows that children who had fever or 

diarrhea are more susceptible to being anemic, malnourished or suffer from both infections. Having fever or 

diarrhea are significant risk factors for the comorbidity pf anaemia and malnutrition. Owning a mosquito treated 

bednet is not considered as a significant risk factor for child illnesses. This could be based on the fact that 

owning mosquito bed net does not translate to using them. The results also reveal that the education status of a 

child mother is consider as a significant risk factors for child illnesses as it concerns anaemia and malnutrition. 

Children from mothers with higher educational qualification have lesser odds of being malnurisshed, anaemic, 

having both illnesses. The socioeconomic status of a child mother is also found to be significant with the odds of 

illnesses. According to the results, a child from wealthy home has a lower odd of being tested positive to 

anaemia and being malnourished or having both illnesses. A child from a house without electricity has higher 

odds of comorbidity of anaemia and malnutrition. However, electricity is not a significant risk factor of the 

infection being considered. 

 

3.1 Spatial effects 
 

Figs. 2-4 show spatial results, the left panels display the estimated posterior means, while the right panels 

present maps of the 95% credible intervals. States shaded in black on the credible interval maps represent 

significantly lower, states shaded in white represents higher estimates, while gray shading indicates non-

significant results for those states. In the case of malnutrition, states with significantly higher risk estimates are 

Borno, Jigawa, Gombe, Bauchi, Edo and Imo. State with higher estimated risk of anaemia are Yobe, Kebbi, 

Delta and Ondo state while states with significantly higher risk of comorbidity of anaemia and malnutrition are 

Borno, Sokoto, Katsina, Kaduna, Ondo, Edo and imo.  The spatial effect result indicate that states with lower 

average precipitation are at higher risk of malnutrition and coexistence of anemia and malnutrition. 
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Table 3. Odd ratio for the fixed effect estimates and their 95 % credible interval 

 
Variables Malnutrition vs no infection Anaemia vs no infection Anaemia and malnutrition vs no infection 

 ROR 95% CI ROR 95% CI ROR 95% CI 

Constant -0.406 -0.766, -0.00246 1.0497 0.784, 1.308 1.312 1.046, 1.586 

Gender 

      Male 

      Female 

 

1 

-0.229 

 

 

-0.167, 0.123 

 

1 

-0.108 

 

 

-0.22, -0.0028 

 

1 

-0.292 

 

 

-0.410, -0.173 

Residence 

      Urban 

      Rural 

 

1 

0.0092 

 

 

-0.1004, 0.299 

 

1 

0.143 

 

 

0.0052, 0.282 

 

1 

0.135 

 

 

-0.011, 0.283 

Fever Status 

      Yes 

      No 

 

1 

0.0068 

 

 

-0.186, 0.201 

 

1 

0.347 

 

 

0.204, 0.479 

 

1 

0.426 

 

 

0.272, 0.571 

Diarrhea Status 

      Yes 

      No 

 

1 

0.449 

 

 

0.191, 0.706 

 

1 

0.107 

 

 

-0.00947, 0.318 

 

1 

0.342 

 

 

0.143, 0.558 

Own Mosquito treated net 

      Yes 

      No 

 

1 

0.0027 

 

 

-0.174, 0.168 

 

1 

0.109 

 

 

-0.00621, 0.222 

 

1 

0.140 

 

 

0.0032, 0.276 

Educational  

    level  

    No education 

    Primary  

    Secondary  

   Tertiary 

 

 

1 

-0.201 

-0.585 

-1.024 

 

 

 

-0.437, 0.0556 

-0.848, -0.366 

-1.364, -0.659 

 

 

1 

-0.104 

-0.391 

-0.795 

 

 

 

-0.294, 0.993 

-0.582, -0.198 

-1.043, -0.555 

 

 

1 

-0.427 

-0.968 

-1.659 

 

 

 

-0.629, 0.233 

-1.155, -0.775 

-1.952, -1.366 

Wealth Index 

   Poorest 

   Poorer 

   Middle 

   Richer 

   Richest 

 

1 

-0.154 

0.00981 

-0.606 

-0.824 

 

 

-0.439, 0.118 

-0.419, 0.207 

-0.991, -0.256 

-1.234, -0.441 

 

1 

-0.117 

-0.319 

-0.386 

-0.694 

 

 

-0.352, 0.0814 

-0.560, -0.0945 

-0.658, -0.125 

-0.992, -0.387 

 

1 

-0.219 

-0.634 

-1.044 

-1.502 

 

 

-0.437, -.000992 

-0.871, -0.418 

-1.303, -0.781 

-1.803, -1.176 

Electricity status 

    Yes 

    No 

 

1 

0.217 

 

 

0.00315, 0.434 

 

1 

-0.0724 

 

 

-0.229, 0.814 

 

1 

0.0621 

 

 

-0.105, 0.225 
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Fig. 2. Residual spatial effects and 95% posterior probability map of malnutrition among under five 

children 

 

 
 

Fig. 3. Residual spatial effects and 95% posterior probability map of Anameia among under five children 

 

 
 

Fig. 4. Residual spatial effects and 95% posterior probability map of disease comorbidity among under 

five children 
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3.2 Non-linear effects of continuous covariates of age on the risk of anemia and 

malnutrition 
 

Figs. 5 to 7 are spline plot illustrating the nonlinear relationship between a child's and mother’s age and the risk 

of malnutrition and anaemia. As displayed in Fig. 4, younger children, particularly those around age 15-25 

months, are at higher risk of malnutrition, with the risk diminishing as they age beyond this range. Also, the risk 

of malnutrition appears to be higher for children born to younger mothers, with the risk decreasing as the 

mother’s age increases. As shown in Fig. 5, the risk of anaemia is high at early age of a child but it declines 

sharply as the child age increases. Also, a child born to younger mother are at higher risk of being anaemic. Fig. 

4 reveals that the risk of anaemia and malnutrition comorbidity is at the peak between age 10 to 20 months, it 

starts to decline sharply after 20 months and begins to rise again at age 50 months. The risk of anaemia and 

malnutrition comorbidity is higher among children of younger and older mothers. 
 

 
Child’s age in Months      Mother’s age in Years 

 

Fig. 5. Non-linear effects of child’s age and mother’s age on the risk of malnutrition 
 

 
Child’s age in Months      Mother’s age in Years 

 

Fig. 6. Non-linear effects of child’s age and mother’s age on the risk of anaemia 
 

 
            Child’s age in Months      Mother’s age in Years 

 

Fig. 7. Non-linear effects of child’s age and mother’s age on the risk of anaemia and malnutrition 

comorbidity 
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4 Conclusion 
 

The study focused on the spatial analysis of anaemia and malnutrition using multinomial model with weighted 

structured random effects. By adding weighted structured random effects based on the average cluster 

precipitation for each state, we have presented a novel method. This adjustment fills a significant gap in the 

research by capturing the impact of climate variation on the risk of pediatric illnesses. Although earlier research 

has looked at the geographic distributions of anemia and malnutrition, it frequently ignored how climate 

conditions, such as precipitation, affect the course of disease. Our model can account for the spatial 

heterogeneity brought about by regional climatic variations by weighting the structured random effects. This 

will yield a more precise assessment of illness risk that is impacted by local environmental factors. 
 

In view of the modelling framework adopted in this study, malnutrition is defined by the presence of any one of 

three indicators: stunting, underweight, or wasting.  A child is considered malnourished if they fit any of these 

criteria.  Similarly, anemia is categorized based on severity—whether it is severe, moderate, or mild—such that 

any level of anemia classifies a child as anemic. This classification allows us to analyze the combined and 

individual impacts of anemia and malnutrition using a multinomial model with weighted random effects, 

focusing on the overlap and unique patterns of these conditions. 
 

The results of models with weighted random effects were compared with that of unweighted model using DIC. 

Based on the values of DIC of each model, it was discovered that model with weighted structured random 

effects have better fit considering the fact that they have lower values of DIC. The adopted spatial modelling in 

this study enables us to incorporate the relationship between the regional variation in climate and the risk of 

childhood anameia and malnutrition. The spatial map reveals that states with lower annual average precipitation 

like Borno, Sokoto, Katsina, Kaduna have higher estimated risk of anemia and malnutrition comorbidity. 

Analysis of fixed effects reveals that mother’s educational status, the socioeconomic status of a child mother, 

having fever and diarrhea, child’s area of residence are significant risk factors of anaemia and malnutrition 

comorbidity among children. The spline plot of non-linear effects of a child and mother’s age also show that 

younger children and children born to younger and older mother are at higher risk of childhood disease 

comorbidity. These findings are in line with the studies carried out by Ibrahim et al. (2024), Kinyok et al. 

(2016), Adeyemi et al. (2019) and Wasswa et al. (2023).  
 

5 Recommendation  
 

In order to improve the robustness of the findings, effort should be made by future researchers to integrate a 

broader range of climatic factors. This expansion would go a long way to enhancing the precision of risk 

estimates, allowing for more focused and efficient public health interventions in vulnerable populations. In 

addition to meeting children's immediate medical needs, these focused, research-based interventions would help 

end the cycle of malnutrition and anaemia among young children, which would eventually improve long-term 

child health outcomes. 
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