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1. Introduction

C oncepts, notation and graph parameters without formal definitions can be clarified in [1–3]. Unless
stated otherwise, graphs will be finite, undirected and connected simple graphs. A shortest path

having end vertices u and v is denoted by u− v(in G). If dG(u, v) ≥ 2 then a vertex w on u− v(in G), w 6= u,
w 6= v is called an internal vertex on u− v(in G). When the context is clear the notation such as dG(u, v), degG(v)
can be abbreviated to d(u, v), deg(v) and so on.

Numerous graph or element parameters have been studied over years. These parameters can be
categorized into two main groups. These are (i) graph structural properties such as, vertex degree, open and
closed neighborhoods, graph diameter, connectivity, independence, domination and so on and (ii) derivative
parameters stemming from a variety of vertex and/or edge labeling regimes or measure conditions. The latter
is the study of the existence of vertex and/or edge subsets which establish graphical compliance with the
definition of the stated labeling regime or measure condition.

Let ρ denote some minimum or maximum graph parameter related to subsets V(G) of graph G. A
minimum dominating set X ⊂ V(G) (therefore ρ = γ(G) = |X|) serves as an example. Let X, Y be distinct
subsets of V(G) which satisfy ρ. Then X and Y is said to be parametric equivalent or ρ-equivalent denoted by,
X ≡ρ Y. Furthermore, if X ≡ρ Y and the induced graphs 〈V(G)\X〉, 〈V(G)\Y〉 are isomorphic then X and Y
are said to be parametric isomorphic. This isomorphic relation is denoted by X ∼=ρ Y. Let all the vertex subsets
of graph G which satisfy ρ be X1, X2, X3, . . . , Xk. If X1

∼=ρ X2 ∼=ρ X3 ∼=ρ · · · ∼=ρ Xk then Xi, 1 ≤ i ≤ k are
said to be parametric unique or ρ-unique. The graph G is said to have a parametric unique or ρ-unique solution (or
parametric unique ρ-set). An interesting interpretation is that if G has a unique (exactly one) ρ-set X, then X is
a parametric unique ρ-set. The converse does not necessarily hold true. The notion of uniqueness has now been
generalized for graph parameter studies.

The motivation is that in many real life application the choice between ρ-sets are often subject to additional
conditions such as centrality, accessibility, domination, conflict with regards to transportation or data flow or
clustering within social networks.

2. Confluence in graphs

The notion of a confluence set (a subset of vertices) of a graph G was introduced in [4]. For a non-complete
graph G, a non-empty subset X ⊆ V(G) is said to be a confluence set if for every unordered pair {u, v} of
distinct vertices (if such exist) in V(G)\X for which dG(u, v) ≥ 2 there exists at least one u− v(in G) with at
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least one internal vertex, w ∈ X . Also any vertex u ∈ X is called a confluence vertex of G. A minimal confluence
set X (also called a ζ-set) has no proper subset which is a confluence set of G. The cardinality of a minimum
confluence set is called the confluence number of G and is denoted by ζ(G). A minimal confluence set is denoted
by C. To distinguish between different graphs the notation CG may be used for a minimum confluence set of
G. Recall two important results from [4].

Theorem 1. [4] For a path Pn, n ≥ 1,

ζ(Pn) =

{
0, if n = 1 or 2;

b n
3 c, if n ≥ 3.

Theorem 2. [4] For a cycle Cn, n ≥ 3,

ζ(Cn) =


0, if n = 3;

1, if n = 4;

d n
3 e, if n ≥ 5.

The path P3 = v1v2v3 has confluence sets X1 = {v1}, X2 = {v2}, X3 = {v3}. Hence, X1 ≡ζ X2 ≡ζ X3.
Clearly, X1

∼=ζ X3 because 〈(V(P3)\{v1}〉 ∼= 〈V(P3)\{v3}〉. However, since X1 �ζ X2 �ζ X3 the path P3

does not have a parametric unique ζ-set. Similar reasoning shows that path P5 = v1v2v3v4v5 has a parametric
unique ζ-set. From [5] it is known that a path Pn, n = 5 + 3i, i = 0, 1, 2, . . . has a unique ζ-set. Therefore, it has
a parametric unique ζ-set.

Proposition 1. A path Pn has a parametric unique ζ-set if and only if n = 1, 2 or n = 4 + 3i or n = 5 + 3i,
i = 0, 1, 2, . . . .

Proof. Part 1. The cases n = 1, 2 follow from the fact that both P1, P2 are complete. Thus CP1 = CP2 = ∅ and is
respectively, unique. Therefore parametric unique.

For n = 4 + 3i, i = 0, 1, 2, . . . , the result follows from the fact that, without loss of generality, the ζ-sets
X1 = {v3, v6, v9, . . . , vn−1}, X2 = {v3, v6, v9, . . . , vn−4, vn−2}, X3 = {v3, v6, v9, . . . vn−7, vn−5, vn−2} and so on
through back stepping until Xζ(Pn)+1 = {v2, v5, v8, . . . vn−8, vn−5, vn−2}, are all parametric isomorphic.

For n = 5 + 3i, i = 0, 1, 2, . . . , the result follows from the fact that Pn has a unique ζ-set [5].
Part 2. If Pn has a parametric unique ζ-set we use elimination through induction to prove the converse. It
is easy to verify that Pn could be P1 or P2. For more valid converse options it is easy to verify that Pn could
be n = 4 + 3i, n = 5 + 3i, i = 0, 1, 2, . . . . It is easy to verify that P3 does not have a parametric unique
ζ-set. For P6, ζ(P6) = 2. Obviously and amongst others, the sets X1 = {v3, v5} and X2 = {v3, v6} are
ζ-sets. Since, X1 �ζ X2 the converse does not hold for P6. Through immediate induction it follows that the
converse does not hold for P3i, i = 2, . . . . Since, N\{x ∈ N : x = 3i, i = 1, 2, . . . } = {y ∈ N : y = 4 + 3i,
i = 0, 1, 2, . . . } ∪ {y ∈ N : y = 5 + 3i, i = 0, 1, 2, . . . } ∪ {1, 2} the converse follows.

Let a cycle Cn, n ≥ 3 have vertex set V(Cn) = {vi : i = 1, 2, 3, . . . , vn} and edge set E(Cn) = {vivi+1 : 1 ≤
i ≤ n− 1} ∪ {v1vn}.

Proposition 2. A cycle Cn has a parametric unique ζ-set if and only if n = 3, 4 or n = 5 + 3i or n = 6 + 3i,
i = 0, 1, 2, . . . .

Proof. Part 1. The case n = 3 follows from the fact that C3 is complete. For n = 4 we have {vi}, 1 ≤ i ≤ 4 a
ζ-set and {vi} ∼=ζ {vj}.

For n = 5 + 3i, i = 0, 1, 2, . . . , a valid minimum confluence set selection procedure is as follows. Let
X1 = {v1, v4, v7, . . . , vn−1}. It is easy to verify without loss of generality, that with v1 the initiation vertex the
procedure yields a unique ζ-set. Applying the procedure through consecutive modular counting for each vi,
1 ≤ i ≤ n yields unique sets Xi in respect of the initiation vertex vi. For each set Xi it follows that

〈V(Cn)\Xi〉 = P2 ∪ P2 ∪ · · · ∪ P2︸ ︷︷ ︸
b n

3 c times

∪P1 = bn
3
cP2 ∪ P1.
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Hence, Xi
∼=ζ Xj for all pairs of ζ-sets. In fact the modular counting results in some identical ζ-sets which need

not be replicated. We conclude that cycles Cn, n = 5 + 3i, i = 0, 1, 2, . . . have parametric unique ζ-sets.
For n = 6 + 3i, i = 0, 1, 2, . . . the reasoning is similar.

Part 2. If Cn has a parametric unique ζ-set we use elimination through induction to prove the converse. It is
easy to verify that Cn could be C3 or C4. For more valid converse options it is easy to verify that Cn could be
n = 5 + 3i, i = 0, 1, 2, . . . or n = 6 + 3i, i = 0, 1, 2, . . . . For Cn, n = 7 + 3i, i = 0, 1, 2, . . . we note that C7 has
at least the ζ-sets, X1 = {v1, v4, v7} and X2 = {v1, v4, v6}. Also, 〈V(C7)\X1〉 � 〈V(C7)\X2〉 hence, X1 �ζ X2.
Therefore the converse does not hold for C7. Through immediate induction it follows that the converse does
not hold for C(7+3i), i = 0, 1, 2, . . . . Since, N≥3\{x ∈ N : x = 7 + 3i, i = 0, 1, 2, . . . } = {y ∈ N : y = 5 + 3i,
i = 0, 1, 2, . . . } ∪ {z ∈ N : z = 6 + 3i, i = 0, 1, 2, . . . } ∪ {3, 4} the converse follows.

Corollary 1. For a cycle Cn which has a parametric unique ζ-set and with regards to vertex labeling let t be the number
of parametric isomorphic ζ-sets which originates from vi ∈ V(Cn). Then Cn has κ(Cn) = nt

ζ(Cn)
distinct parametric

isomorphic ζ-sets. This implies that

(a) If Cn, n = 6 + 3i, i = 0, 1, 2, . . . then κ(Cn) =
n

ζ(Cn)
.

(b) If Cn, n = 5 + 3i, i = 0, 1, 2, . . . then κ(Cn) = n.

Proof. The claim κ(Cn) =
nt

ζ(Cn)
is trivial.

(a) Let n = 6 + 3i, i = 0, 1, 2, . . . : Thus ζ(Cn) ≥ 2. From the proof of Proposition 2(Part 1) it follows that a
vertex vi ∈ V(Cn) yields exactly one ζ-set. Hence, t = 1 implying that any two vertices in a ζ-set initiate
identical ζ-sets. The aforesaid settles the result.

(b) Let n = 5 + 3i, i = 0, 1, 2, . . . : A valid minimum confluence set selection procedure is as follows. Let
X1 = {v1, v4, v7, . . . , vn−1}. It follows that X2 = {v1, v4, v7, . . . , vn−2} is valid. By similar modular back
shifting it follows that X3 = {v1, v4, v7, . . . , vn−5, vn−2} is valid and so on. Hence, vertex v1 initiates
exactly ζ(Cn) parametric isomorphic ζ-sets. Therefore, κ(Cn) =

nζ(Cn)
ζ(Cn

= n.

3. Types of trees

The authors are not aware of a unified classification of trees. The classification below is not a partition
hence some categories (or families) are sub-categories of others. It is merely the specialization of structure
which motivates the classification. When k, k ≥ 1 leafs (or pendent vertices) are attached to a selected vertex v
it is said that a k-bunch of leafs has attached to v.

(a) Paths is a tree with exactly two leafs.
(b) A star S1,n, n ≥ 3 (sub-category of spiders) has a central vertex v0 with n leafs.
(c) A `-star S`,n?m, ` ≥ 2, n, m ≥ 2 has a path P` = v1v2v3 · · · v` with a n-bunch of leafs attached to say, v1

and a m-bunch of leafs attached to v`.
(d) A spider S∗n, n ≥ 3 is a starlike tree with one vertex v0 of degree n and all other vertices have degree at

most 2. Clearly, S∗n, n ≥ 3 has n pendent vertices. Hence in this context n does not mean the order of
a spider. Put differently, a spider has a central vertex v0 which is attached with an edge to exactly one
end-vertex of each path Pm1 , Pm2 , . . . , Pmn , n ≥ 3.

(e) A caterpillar Cn1?n2?,···?nk , ni, k ≥ 1 has a central path (or spine) Pm, m ≥ max{3, k} with each ni-bunch of
leafs, i = 1, 2, 3, . . . , k attached to a distinct vertex of Pm. If all ni = 1 a trivial lobster is obtained.

(f) A lobster LT1,T2,T3,...,T` , Ti ∈ {P1, P2, P3, S1,n}, ` ≥ 1, has a central path Pm, m ≥ 1 and the central vertex of
each Ti be it an isolated vertex for P1 or an end-vertex for P2 or v2 for P3 or v0 for stars are connected by
an edge to some vertex of Pm. Hence a vertex of Ti is within distance 2 from some vertex of Pm. A lobster
has the property that if all leafs are removed a caterpillar is obtained.

(g) A finite (k, d)-regular tree Tk,d, d ≥ 3, k ≥ 1 are obtained as follows: Take a central vertex v0, ( k = 0) and
attach d leafs to v0 (1st-iteration k = 1), then for each new leaf attach d− 1 leafs (2nd-iteration k = 2),
then for each new leaf attach d − 1 leafs, · · · , until the kth-iteration. Note that for a (k, d)-regular tree
Tk,d, d ≥ 3, k ≥ 1 each leaf is an end-vertex of some diam-path and diam(Tk,d) = 2k and v0 is on every
diam-path.
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(h) All other trees not in (a) through to (g).

Recall that the pendent degree of vertex u ∈ V(G) denoted by degp(u) be the number of leafs adjacent
to u. The open and closed pendent neighborhood of a vertex v are respectively, Np(v) = {leafs of v} and
Np[v] = Np(v) ∪ {v}. Also, a vertex v to which a leaf u is attached is called the pre-leaf of u or simply, pre-leaf
v. For paths the result with regards to parametric uniqueness is known (Proposition 1). A star has the unique
ζ-set, {v0} which implies it has a parametric unique ζ-set.

Proposition 3. A `-star S`,n?m, ` ≥ 2, n, m ≥ 2 has a parametric unique ζ-set if and only if P`−2 = v2v3v4 · · · v`−1,
has `− 2 = 4 + 3i or `− 2 = 5 + 3i, i = 0, 1, 2, . . . .

Proof. If ` = 2, then `− 2 = 0, thus P`−2 = ∅. For both ` = 3, 4 the paths P1, P2 are complete. For `− 2 = 4+ 3i
or `− 2 = 5 + 3i, i = 0, 1, 2, . . . , the result is a direct consequence of the proof found in Proposition 1 and the
fact that both 〈Np[v2]〉, 〈Np[v`−1]〉 are stars.

Proposition 4. A spider S∗n, n ≥ 3 has a parametric unique ζ-set if and only if, either (a) each Pmi , 1 ≤ i ≤ n has a
parametric ζ-set or (b) each Pmi , mi = 3j, j = 1, 2, 3, . . . . Furthermore,

(a) ζ(S∗n) = 1 +
n
∑

i=1
ζ(Pmi ).

(b) ζ(S∗n) =
n
∑

i=1
ζ(Pmi ), mi = 3j, j = 1, 2, 3, . . . .

Proof. It is known that a leaf need not be in a ζ-set of any graph. See Lemma 8 in [5]. From the proof of
Proposition 1 it follows that if a path has a parametric unique ζ-set, an end-vertex cannot be in such set.
Therefore v0 is in all ζ-sets of S∗n if each Pmi , 1 ≤ i ≤ n has a parametric ζ-set. Hence, if all paths have a

parametric unique ζ-set then the spider has same. Hence, ζ(S∗n) = 1 +
n
∑

i=1
ζ(Pmi ).

If n copies of P3 are connected to v0 the ζ-set is unique of order n. Therefore the ζ-set is parametric unique.
Also v0 is not in the ζ-set. However, P3 does not have a parametric unique ζ-set. If some of the 3-paths are
substituted with paths of the form Pmi , mi = 3j, j = 2, 3, . . . , it follows easily through immediate induction that

the ζ-set is parametric unique and does not contain vertex v0. Hence, ζ(S∗n) =
n
∑

i=1
ζ(Pmi ), mi = 3j, j = 1, 2, 3, . . . .

For paths Pmi , mi = 4 + 3j, or mi = 5 + 3j, j = 0, 1, 2 . . . the converse follows implicitly. For paths Pmi ,
mi = 3j, j = 1, 2, 3 . . . the exclusion of v0 due to minimization results in a unique choice of a ζ-set with regards
to the paths.

Claim 1. For caterpillars Cn1?n2?,···?nk , ni, k ≥ 1 a heuristic procedure will be described. This heuristic is adapted from
the heuristic described for trees in [5].

Step 1. Let X1 = {v : v ∈ V(Pm), degp(v) ≥ 2}. Delete all Np[v], v ∈ X1 from the caterpillar.
Step 2. Repeat Step 1 exhaustively to obtain sets X2, X3, . . . , Xt. This is always possible and yields an explicit disconnected

graph consisting of say, q components which could be paths and/or trivial caterpillars.
Step 3. Utilize the heuristic for trees to obtain a ζ-set of each of the q components. Label as sets Yi, 1 ≤ i ≤ q.

Step 4. If each Yi is parametric unique then C = [
t⋃

i=1
Xi] ∪ [

q⋃
j=1

Yj] is the parametric unique ζ-set of the caterpillar.

Otherwise, the caterpillar does not have a parametric unique ζ-set.

Claim 2. For a lobster LT1,T2,T3,...,T` , Ti ∈ {P1, P2, P3, S1,n}, ` ≥ 1, a heuristic is described.

Step 1. Let Z1 = {v : v ∈ V(LT1,T2,T3,...,T`), degp(v) ≥ 2}. Delete all Np[v], v ∈ Z1 from the lobster. The say, q
components are path(s) and/or caterpillar(s).

Step 2. Utilize the heuristic for caterpillars to obtain a ζ-set of each of the q components. Label as sets Yi, 1 ≤ i ≤ q.

Step 3. If each Yi is parametric unique then C = [
t⋃

i=1
Zi]∪ [

q⋃
j=1

Yj] is the parametric unique ζ-set of the lobster. Otherwise,

the lobster does not have a parametric unique ζ-set.
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Proposition 5. A finite (k, d)-regular tree Tk,d, d ≥ 3, k ≥ 1 has a parametric unique ζ-set and,

(a) If ` ≥ 2 is even then, ζ(Tk,d) = d[1 + ∑
t=3,5,7,...,(k−1)

(d− 1)t−1].

(b) If ` ≥ 3 is odd then, ζ(Tk,d) = 1 + d[ ∑
t=2,4,6,...,(k−1)

(d− 1)t−1].

Proof. It follows easily that for k = 0 only v0 exists. For ` ≥ 1, d ≥ 3 we have, level k = 1 d leafs, level
k = 2 d(d− 1) leafs, . . . , level k = ` d(d− 1)`−1 leafs.

Case 1. If ` ≥ 2 is even then C =
⋃

k=1,3,5,...,(k−1)
{v : all v in level k}. It is easy to verify that C is unique hence,

parametric unique. Furthermore, ζ(Tk,d) = d[1 + ∑
t=3,5,7,...,(k−1)

(d− 1)t−1].

Case 2. If ` ≥ 3 is odd then C = {v0} ∪
⋃

k=2,4,6,...,(k−1)
{v : all v in level k}. It is easy to verify that C is unique

hence, parametric unique. Furthermore, ζ(Tk,d) = 1 + d[ ∑
t=2,4,6,...,(k−1)

(d− 1)t−1].

4. Conclusion

In Corollary 1 the parameter κ(Cn) was introduced. From the proof of Proposition 1 it follows directly
that for Pn, n = 4 + 3i, i = 0, 1, 2, . . . we have κ(Pn) = ζ(Pn) + 1 = b n

3 c+ 1. For Pn, n = 5 + 3i, i = 0, 1, 2, . . .
we have κ(Pn) = 1. Furthering research for the parameter κ(G) in general remains open. Finding a ζ-set for G
in general is known to be NP-complete. Determining isomorphism between graphs is at least in the P-domain.

Conjecture 1. Consider any ζ-set C of graph G, ζ(G) ≥ 2. If for all ζ-sets C ′ derived from C such that C ∩ C ′ 6= ∅ we
have that C ∼=ζ C ′ then G has a parametric unique ζ-set.

If the conjecture is proven to be valid it opens an avenue to develop an efficient algorithm to determine
parametric uniqueness in a graph. The principles are; (a) determine a ζ-set where-after, (b) find all derivative
ζ-sets by substituting say u ∈ C(G) with v ∈ N2(u) and verifying confluence as well as parametric
isomorphism. If the condition of confluence and parametric isomorphism are affirmative then parametric
uniqueness follows. If the next stronger conjecture holds then the efficiency of an algorithm can be improved
significantly.

Conjecture 2. Consider any ζ-set C of graph G, ζ(G) ≥ 2. Let v ∈ C. If for all ζ-sets C ′ derived from C such that
v ∈ C ∩ C ′, we have that C ∼=ζ C ′ then G has a parametric unique ζ-set.

Researching parametric uniqueness with regards to confluence remains open for a vast range of
interesting graph families such as circulants, cycle related graphs such as, wheel graphs, helm graphs, sunlet
graphs, sun graphs and so on. Other graph parametric sets such as dominating sets, independent sets and
others can be studied in respect of parametric uniqueness.
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