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ABSTRACT 
 

Molecular dynamics (MD) simulation could provide details about local microstructure at atomic level, 
so we use this method to investigate micro-structural properties of sodium in Na2O-doped SiO2 
melt. Additionally, we calculated the Voronoi polyhedrons to determine the spatial distribution of 
atoms in the simulation models. The result shows that many bridging oxygen (BO) polyhedrons and 
all Si-polyhedrons do not contain Na atoms. Most non-bridging oxygen (NBO) polyhedrons contain 
2, 1 or no Na atoms, where BO, NBF is the O bonded with 2 and 1 or no Si, respectively. Average 

volume per polyhedron decreases in order: NBFx-polyhedron → BOx-polyhedron → Six-
polyhedron. Na atoms are found in NBFx-polyhedrons and frequently move through them leading to 
very fast diffusivity of Na in comparison with Si and O. The simulation shows that the number of 
neighbors around the NBFx-polyhedron is larger than that around the BOx-polyhedron.  
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1. INTRODUCTION 
 

“The micro-structure of silica (SiO2) is an 
archetypal network-forming system containing 
SiO4 tetrahedra. The addition of doped Na atoms 
generates non-bridging oxygen (NBO) in SiO4. 
Consequently, the Na2O-doped SiO2 gives 
various anomalous properties which are 
essential for industrial applications, ceramics, 
and understanding the fundamentals of minerals” 
[1-5]. “The Na2O-doped SiO2 melt has been 
intensively investigated by experimental 
techniques including photoelectron spectroscopy, 
X-ray diffraction, in situ Raman spectroscopy and 
elastic neutron scattering, and various simulation 
techniques” [6-11]. “The addition of doped Na 
ions to pure SiO2 melt leads to a decoupling of 
alkali diffusion and diffusive transport in the Si-O 
network” [10-17]. Davidenko et al. in ref. [7] 
suggested that “the distribution where the 
increasing alkali oxide content causes the 
homogeneous increasing disruption of Si-O 
network of pure SiO2 is in conflict with highly 
nonlinear dependence of viscosity on alkali 
concentration. In accordance with studies” [18-
21], the pre-peak at 0.9 Å-1 in the micro-structure 
factor measured experimentally for alkali silicates 
is evidence for the diffusion pathway.  
 

“Various experimental results found that the 
micro-structure of these silicates is found to 
comprise micro-regions with high sodium 
concentration. The two micro structural samples, 
the modified random network and the 
compensated continuous random network predict 
some clustering of alkali atoms in the silicate's 
microstructure” [22-24].  
 

The structure as well as applications of silica and 
sodium silicate have also been shown in 
references [25-27]. However, the spatial 
distribution of Na in the Na2O-doped SiO2 melt 
remains not fully clarified yet. Therefore, in 
present study, we focus on Na2O-xSiO2 melt (x = 
1, 2, 3, 4) at pressure of 0.1 MPa and 
temperatures of 1573 K. Based on the features 
of pair radial distribution function (PRDF), 
topographies of the Voronoi Ax- polyhedrons, 
and subnets Si-O in system.  
 

2. COMPUTATIONAL METHODS 
 

“We conduct the MD simulation for NSx, i.e. 
Na2O-SiO2 (NS1), Na2O-2SiO2 (NS2), Na2O-
3SiO2 (NS3) and Na2O-4SiO2 melt at pressure of 
0.1 MPa and temperature of 1573 K. The total 

number of particles in each system is 
approximately equal to 10,000. The interaction 
potentials used includes two- and three-body 
terms, which reproduce well the micro structural 
and transport properties of sodium silicates. The 
complete description of these potentials can be 
found elsewhere” [4,28]. In order to collect the 
micro-structure and dynamics data we 
additionally run the simulation for 150 ps to 
produce 76 configurations separated by 2 ps. 
The structure is analyzed by PRDF and by the 
one determined separately for BO and NBF. 
Here BO, NBO and FO are the oxygen which is 
bounded respectively with two, one or no Si; both 
NBO and FO are denoted to NBF.  
 

Si-BO subnet, Si- and O-centered Voronoi 
polyhedrons have been calculated for every 
system. It turns out that the simulation box is fully 
filled by those polyhedrons. Each Na is placed 
inside one among them. Several typical 
polyhedrons are shown in Fig. 1. The following, 
A-centered polyhedron is called an Ax-
polyhedron, where A is the Si, O, BO or NBF; x is 
the number of Na placed in A-centered 
polyhedron. We call that all Six-polyhedrons and 
a part of Ox-polyhedrons are A0-polyhedron 
type. Moreover, Na often moves between Ox-
polyhedrons leading to very fast sodium 
diffusivity. Fig.1 illustrates the system comprising 
a large Si-O subnet. The Si-O subnet is defined 
as a subset of Si and BO connected by Si-O 
bonds, where BO is bonded with two Si, while Si 
is bonded with four O forming the SiO4 unit.  
 

3. RESULTS AND DISCUSSION 
 

“To check the value of the simulation samples, 
we compared the position of the first peak of 
PRDF with experimental data. Table 1 lists the 
interatomic distances obtained from simulation, 
and experimental data” [29]. Although rSiNa and 
rNaNa show some discrepancies, the built models 
overall are consistent with the experiments. In 
particular, they reproduce the experimental data 
for rSiSi, rSiO, rOO, and rNaO. 
 

Fig. 2 shows the PRDF determined for BO-Na, 
NBF-Na and O-Na pairs. A clear peak is seen for 
the NBF-Na pair, with a significant increase in 
height from NS1 to NS4. “The location of this 
peak is slightly different. For the BO-Na pair, the 
height of the first peak is much lower than for the 
NBF-Na pair. This result indicates that Na atoms 
are mostly located around NBF and rarely near 
BO. Furthermore, the local sodium density in 
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BOx and NBFx polyhedra changes strongly with 
SiO concentration. Unlike the NBF-Na pair, the 
first peak of the Si-Na pair is located at 3.0-3.6 Å, 
which is significantly larger than that of the NBF-
Na pair. This means that Na is not in the Six-
polyhedrons. These marks are consistent with 
the reports” [1-6]. 
 
Fig. 3 shows snapshots of the distribution of 
coordination units SiOx and NaOy in a model of 
Na2O-3SiO2 melt at a pressure of 0.1 GPa (here 
we only draw a part with size 6×20×20 Å3). Fig. 3 
indicates that the micro-structure of Na2O-3SiO2 
melt comprises the coordination units SiO4, and 
some NaO4, NaO5. From Fig. 3, it can be seen 
that the distribution of coordination units SiO4 is 
not uniform. Still, it tends to form clusters of SiO4, 
and the coordination units SiO4 tend to connect 
via a common oxygen atom to form subnet Si-O. 
Similarly, the coordination NaO4 tends to connect 

to create a cluster of NaO4, and the Na2O-3SiO2 

melt only contains some coordination NaO5. 
Therefore, the micro-structure of Na2O-3SiO2 

melt is built up from the intermixture of the 
clusters SiO4, NaO4, NaO5, and free Na. 
 
Table 2 shows the average volume per 
polyhedron in descending order: NBFx-

polyhedron → BOx-polyhedron → Six-
polyhedron, and it slightly varies with SiO2 
content. We note that <xNBFx> is significantly 
larger than <xBOx>. Moreover, <xBOx> changes 
powerfully with SiO2 content. This result shows 
that the spatial distribution of sodium is strongly 
heterogeneous. In particular, the most important 
Na atoms are located in NBFx polyhedra with a 
total volume of 27.11–67.10% of the simulation 
box. In the system with lower SiO2 content, more 
Na diffused into the Box-polyhedron. 

 

Table 1. Interatomic distance (Å) 
 

Samples rSiSi rSiO rOO rSiNa rONa rNaNa 

NS1 3.10 1.60 2.60 3.00 2.20 3.25 
NS2 3.10 1.60 2.60 3.30 2.25 3.50 
NS3 3.10 1.55 2.60 3.35 2.25 3.65 
NS4 3.10 1.60 2.60 3.40 2.25 3.60 
Exp. [29]   3.05 1.62 2.62 3.50 2.29 2.6-3.05 

 

 
 

Fig. 1. Schematic illustration of Ax-polyhedrons (a) and Si-O subnet (b). Here A is Si, BO or 
NBF; x = 0, 1, 2, 3 and 4. Ax-polyhedron can contain Na atoms 
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Fig. 2. PRDF for NBF-Na, BO-Na, and Si-Na pairs of NSx at temperature of 1573 K and pressure 

of 0.1 MPa 
 

 
 
Fig. 3. Spatial distribution of SiOx and NaOy in sample Na2O-3SiO2 at temperatue of 1573 K and 

pressure of 0.1 MPa, here O (red color), Si (blue color), Na (yellow color) 
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Fig. 4. The fraction NAx/NA as a function of xAx. Here NAx, NA is the number of Ax-polyhedrons 
with xAx, and total number of A; xAx is the number of Na in Ax-polyhedron; A is the BO or NBF 

 
Table 2. Characteristics of Ax-polyhedrons. Here <vSix>, <vBOx> and <vNBFx> is the average 
volume per Six-, BOx- and NBFx-polyhedron, respectively; VSix, VBOx, VNBFx and VSB is the 

volume occupied by Six-, BOx-, NBFx-polyhedrons and volume of simulation box, 
respectively; mNBF, NNa is the number of Na in NBFx-polyhedrons and total number of Na, 

respectively. 
 

System <vSix>, 
Å3 

<vBOx>, 
Å3 

<vNBFx>, Å3 VSix/VSB VBOx/VSB VNBFx/VSB mNBF/NNa 

NS1 8.13 20.12 30.41 0.0920 0.2370 0.6710 0.8682 
NS2 7.96 20.25 31.45 0.1140 0.4369 0.4491 0.8081 
NS3 7.94 20.37 31.96 0.1260 0.5379 0.3361 0.7909 
NS4 7.94 20.44 32.45 0.1324 0.5965 0.2711 0.7798 
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Fig. 5. The fraction NAx/NA as a function of <xAx>. Here NAx, NA is the number of Ax-polyhedrons 

with <xAx> and total number of BO or NBF; <xAx> is the average number of Na in Ax-
polyhedron during 150 ps 

 
Different Six-polyhedrons, Ox-polyhedrons either 
are polyhedrons with xOx = 0 or xOx > 0. As shown 
in Fig. 4, the number of BO0-polyhedrons 
increases from 78.1 to 95.8% with increasing 
SiO2 content. Fig. 4 shows that most Box-
polyhedrons are BO0 and BO1 polyhedrons, 
while the most important NBFx- polyhedrons are 
either NBF0, NBF1, and NBF2 polyhedrons. In 
addition, “the Na atoms are concentrated in the 
NBFx-polyhedrons instead of being uniformly 
distributed in the Ox- polyhedrons. The obtained 
result makes it possible to propose a simple 
diffusion model. Consequently, Na moves from 
BOx and NBFx- polyhedron sites. Each slot is 
empty or occupied by one Na in BOx- 
polyhedron, an NBFx polyhedron has one and 
two points respectively. There are also torus 
polyhedrons with more than 2 sites, but their 
concentration is very low. Na transfer between 
Ox- polyhedrons results in very fast diffusion of 
Na compared to Si and O” [10,20]. 
 

The sodium distribution in polyhedrons shown in 
Fig. 5, it can be wide and asymmetrical. A 
pronounced peak is seen. This result confirms 
the fact that Na atoms are concentrated in NBF-
polyhedrons instead of uniformly distributed 
through O-polyhedrons. 
 
In summary, Na atoms are concentrated in NBF-
polyhedrons instead of uniformly spreading 
through O-polyhedrons. The frequent displacing 
of Na between polyhedrons mainly contributes to 
the sodium’s diffusion. The system consists of 
the NBO-FO, interfacial and Si-BO regions. The 
rate of Ax → Ax’ happening in those regions 
reduces in the order: NBO-FO region → interface 
region → Si-BO region. Therefore, our results 
can propose that Na atoms diffuse by hopping 
alone and collective movement, but the major 
amount of Na moves collectively across O-
polyhedrons located nearby. For melt                         
with high SiO2 content the NBO-FO region can 
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represent the preferential sodium’s diffusion 
pathway. 
 

4. CONCLUSION 
 

MD simulation is carried out for NSx melt at 
temperature of 1573 K and pressure of 0.1 MPa. 
Micro-structural properties are investigated 
through Voronoi polyhedron. The result shows a 
pronounced peak for the NBF-Na pair of which 
the height varies with SiO2 content. The position 
of the first peak for Si-Na peak is located at a 
distance significantly larger than that for the 
NBF-Na pair. The simulation demonstrates that 
Na atoms mostly present in the vicinity of NBF 
and rarely around BO. Simulation reveals that Na 
atoms are not placed in Six-polyhedrons and in 
about 32.9 to 72.89 % of total BOx-polyhedrons. 
Most NBFx-polyhedrons contain 2, 1 or no Na. 
The average volume per polyhedron decreases 

dramatically in the order: NBFx-polyhedron → 

BOx-polyhedron → Six-polyhedron. Although the 
average volume per polyhedron weakly             
depends on SiO2 content, the volume occupied 
by all NBFx-polyhedrons varies strongly with 
SiO2 content. We also discovered that Na atoms 
are not only located in NBFx-polyhedrons, but 
they also move frequently through them. 
Therefore, we suggest that melt with high SiO2 
content the NBO regions and FO regions can 
represent the preferential sodium’s diffusion 
pathway. 
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