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Abstract 
 
We consider a one-dimensional elastic line with a linear varying density. Utilizing a Computer Algebra Sys-
tem (CAS), such as Mathematica symbolically we solve the equation describing progressive transverse 
waves yielding standing waves. For a set of suitable parameters the numeric mode of Mathematica displays 
and animates vibrating normal modes bringing the vibrations to life. We tailor a device that mimics the 
characteristics of the non-linearity; experimentally we explore its integrity. 
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1. Introduction and Motivation 
 
The description of progressive transverse and longitudi-
nal waves in a uniform non-dispersive elastic media is 
trivial. This is discussed in introductory physics and en-
gineering undergraduate college textbooks [1-3]. Despite 
being trivial they are useful and practical describing the 
characteristics of waves occurring in nature such as wa-
ter waves, light waves, and sound waves, and in man- 
made media such as string waves and etc. In its simplest 
scenario, in one-dimension, combining two identical trave- 
ling waves progressing in opposite directions results in 
standing waves. Meaning, given the appropriate parame-
ters the superposition of the waves may result in con-
structive and destructive interferences making the dis-
placement of the elastic media maximum or zero, respec-
tively. The uniformity of the media yields spreading 
evenly the nodal and anti-nodal points along the line. 
The vibrating media with specific vibrating frequencies 
appears as if it were standing still. The normal modes of 
these standing waves are distinguished with their fre-
quencies; frequencies of the higher excited modes are 
integer multiples of the frequencies of the lower normal 
modes. In other words, frequencies of the harmonics are 
related via integer multipliers. 

For a nonuniform non-dispersive media the scenario is 
quite different. Envisioning designing an experiment that 
mimics the characteristics of a nonlinear media in our 
current search we focus on analyzing the characteristics 
of transverse standing waves. As we discuss in Section 2, 

the fundamental difference between a uniform vs. a 
nonuniform elastic media is the impact of the latter on 
the traveling waves. The equation describing the former 
in one-dimension is trivial and is solved at ease [1-3]. On 
the other hand for the latter, solving the equation and 
implementing the boundary conditions conducive to the 
standing waves mathematically is challenging. In general, 
deviating from a monotonically increasing density results 
in mathematical challenges; some of the issues are ad-
dressed in the Conclusions section. 

A thorough literature search reveals that there are a 
limited number of research articles that have discussed 
the traveling waves in nonlinear media; [see references 
within 4]. In our view [4] is a comprehensive article. 
Aside from being analytical the author with much effort 
composed a cumbersome computer code deducing the 
needed numeric values; however, the author displayed 
only one normal vibrating mode. With the advent of a 
Computer Algebra System (CAS), such as Mathematica 
[5] we investigate similar issues bringing to the forefront 
a host of fresh generalizations. From the author's point of 
view solving the needed ODE utilizing Mathematica is 
as powerful as solving the same equation the traditional 
way. The payoff is the time saved shortening the analytic 
formulation then invested in exploring fresh ideas, such 
as devising complementary experiment for a better un-
derstanding. Moreover, the augmented numeric analysis 
is conducive not only displaying normal modes, but also 
animating the associated standing waves, features that 
forcefully were left out in the pre-CAS era. With these 
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objectives we craft this note as follows. In addition to 
Introduction and Motivation, in Section 2, The Physics 
of the Problem, we lay down the foundation of the 
needed fundamentals. In Section 3, Analysis, applying 
Mathematica we solve the time independent piece of the 
wave equation analytically. In this section for a set of 
suitable parameters we evaluate the numeric values of 
the functions displaying the normal modes of the vibra-
tions. In Section 4, Experiment, we discuss the charac-
teristics of the manufactured replica. Utilizing data we 
correlate our analysis to the non-linearity of the line. We 
close our search making a few conclusive remarks sug-
gesting how to generalize the features of our study. 
 
2. The Physics of the Problem 
 
It is known that the wave equation for displacement of a 
uniform string from its equilibrium position is given by 
[2, and reference 3 within], 

       
2

2
, ,T x u x t x u x t

x x t
        

     (1) 

where u(x,t) is the displacement, T(x), and μ(x) are the 
position dependent tension and density of the line, re-
spectively. Assuming the latter two quantities are con-
stants, i.e. T(x) = T0 and   0x  , (1) assumes the 
classic form, 
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where the speed of the traveling signal is 0
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Equation (2) has a separable solution, namely, 
     , tx tu f x   with  and   ie kxf x    e i tt    

such that 0v k . Equation (2) yields, 

    , e ei kx t i kx tu x t A B                  (3) 

Meaning, (1) being a linear ODE yields the superposi-
tion of the individual solutions. These are interpreted as 
being progressive signals along the stretched line. The 
first term describes a wave traveling from left to right 
and the second term is the description of a wave pro-
gressing from right to left, respectively. This can also be 
written as sinusoidal functions such as, 

     , sin sinx t C k xu x t D k t     . 

The latter is the standard notation typically used in in-
troductory text books. The advantage of writing the solu-
tion according to (3) vs. the alternate  
is that the former can be written as, 

  i t kx i t kxAe Be   

  , e e eikx i t i tu x t A B  
ikx

              (4) 

The factored function is the sinusoidal position 

dependent term of the traveling wave. This simple func-
tion inherits the homogeneity characteristics (constant 
density) of the line. For an inhomogeneous line, however, 
(4) may be generalized. Meaning, assuming constant 
tension, (1) reads, 

e
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       (5) 

The time dependence of (5) is the same as (1). There-
fore, their associated time dependent solutions are the 
same as well. On the other hand, the coordinate depend-
ent solution of (5) is f(x), such that, 

      0f x g x f x                 (6) 

where g(x) is an x-dependent function. Among other things 
it embraces the inhomogeneity of the line; we share more 
on this in the next paragraph. Hence, the formal solution 
of (5) is, 

    , e i t i tu x t f x A B   e          (7) 

For a nonuniform line we consider the same coordi-
nate dependent function as [4], namely, 

  0 1 x
l

x
     

 
. 

The  x  is the x-dependent density of the line; its den- 
sity increases monotonically from one end to the other 
end of the length . Parameter    according to  

  01 l    is the ratio of the densities evaluated at 
both ends; is the corresponding density of a uniform line. 
Accordingly g(x) reads, 

 
 

   

2

2

0

     if 0,

if 0,    (5)

ikxk f e
g

k f subject to

x
xx

x







  
  


 (8) 

We have also considered a variety of functions such as 

quadratic density function,     2 2
0 1x l x    . 

We made comments concerning this function in the 
Conclusions section. 
 
3. Analysis 
 
The task at hand is to evaluate  f x

 
. The code solving 

(6) utilizing Mathematica for g x  given by (8) is, 
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The solution is a linear combination of two distinct 
Airy functions. The AiryAi and AiryBi are the first and 
the second kind of Mathematica library Airy functions, 
respectively. The coefficients C[1] and C[2] are to be 
determined by applying the desired boundary conditions. 
For instance clamping both ends of the line imposes 

. These boundary conditions 
yield a set of two linear independent equations. The 
nonzero solution of the latter requires a null Wronskian, 
i.e. W = 0. The solution of the latter calls for a numeric 
computation. For a set of numeric parameters correspond- 
ing to the physical properties of the line such as, length 

 and density parameter 

   0f x f x l   

l

0

  we seek for value (s) of k 
subject to W = 0. Considering the fact that all four ele-
ments of the  Wronskian are oscillatory Airy func-
tions deducing successfully numeric values for k from 
such a challenging equation brings a great deal of appre-
ciation to the superb computational power of Mathe-
matica. The abscissas of the intercepts of the Wronskian 
with the horizontal axis as shown in Figure 1 are the 
roots of W = 0. The Mathematica code yielding Figure 1 
is a modified version of the code [6]. 

2 2

By varying the value of   and repeating the proce-
dure conducive to Figure 1, we tabulate the results in 
Table 1; this is the extended and more accurate version 
of Table 1 [4]. 

The tabular values of πk  according to Table 1 
clearly show the impact of the in homogeneity of the line. 
The heading of the first column, n, is the indicator of the 

 

5 10 15 20 25
k

0.3

0.2

0.1

0.1

0.2

W

 
{{k1.2643},{k2.60158},{k3.93683},{k5.2704},{k6.60282},{k
7.93443},{k9.26543},{k10.596},{k11.9262},{k13.2561},{k
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21.2318},{k22.5607},{k23.8895}} 

Figure 1. Plot of W vs. k for = 10.0. The list is the coordi-
nates of the abscissa shown by the dots. 

number of the nodal points between the two clamped 
ends of the line. E.g. n = 0 corresponds to no nodes and n 
= 7 means seven nodes. The second column with equally 
spaced πk  is indicative of harmonic vibrations. The 
remaining headings are the values of the in homogeneity 
given by parameter  . The numbers underneath each 
corresponding   are to be compared to the associated 
values of the harmonic waves, i.e. the second column. 
One observes for instance for a chosen   the “wave-
lengths” are variable. For the sake of comprehension 
Figure 2 shows the first six normal vibrating modes of a 
homogeneous line vs. the corresponding inhomogeneous 
line for   = 10.0. 

 
Table 1. Extended Table 1 [4]. The first column is the 
number of the nodes, n. The headings of the remaining 
columns are the values of . The tabulated numbers are the 
values of k/π. 

n   0.0 0.1 1.0 10.0 60.0 

0  1.0 0.97582 0.81455 0.40243 0.17622

1  2.0 1.95191 1.63752 0.82810 0.36553

2  3.0 2.92793 2.45891 1.25313 0.55514

3  4.0 3.90393 3.27983 1.67762 0.74477

4  5.0 4.87993 4.10053 2.10174 0.93438

5  6.0 5.85593 4.92113 2.52561 1.12398

6  7.0 6.83193 5.74167 2.94928 1.31356

7  8.0 7.80792 6.56617 3.3728 1.50312
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Figure 2. Display of the first six normal vibrating modes of a 
uniform (= 0, the blue curves) and the nonuniform (= 
10.0, the red curves) line. 
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In Figure 2 for the sake of clarity the amplitudes of 
the nonuniform line (the red curves) are multiplied by a 
factor 3. The plot labels (nodal indices) in these graphs 
are the same as the ones used in Table 1. One observes 
that for the uniform line (the blue curves) the vibrations 
are cyclic, i.e. throughout the entire length of the line the 
wavelengths stay the same and the amplitudes within 
them are the same from one segment to the adjacent 
segment. On the contrary, for the nonuniform line (the 
red curves) the wavelengths are not the same. In fact 
while approaching from the light to the heavy end (from 
left to right) the wavelengths are shortening and the am-
plitudes within them as shown systematically are dimin-
ishing. 

With this wealth of information in hand, one may 
animate the vibrations bringing the standing waves to life. 
E.g. Figure 3 is a snapshot of the animation of the fifth 
mode for an inhomogeneous   = 10.0 line. 
 
4. Experiment 
 
One of the objectives of our investigation is to seek a 
real-life setting supporting the characteristics of the pro-
posed idealized theoretical phenomenon. The challenge 
is to design/tailor a device that mimics the properties of a 
monotonically increasing density of a one-dimensional 
line. In principal it is plausible to manufacture one such 
replica; instead, the author considered a planar isosceles 
triangular homogeneous strip that replicates the same 
general characteristics. The verification of the design is 
explained in detail in the next paragraph. Assuming the 
proposed model is just, the ancillary issue is to verify 
whether the one-dimensional classic standing wave for-
mulation is applicable to a two-dimension vibrating me-
dia; we rectify this issue first. 

The frequencies of one-dimensional standing waves 
with progressive wave speed 

0
0

0

T
v


  is 0

1

2nf v n
l

   
 

 [1-3,9]. 

Our experiment set-up is shown in Figure 4. Accord-
ingly, T0 = hanging weight = Mg and 0  = density of 
the homogeneous line = m l . 

This yields,    1 2 'nf l M m g l n  where  is the 
length of the vibrating piece and  is the entire length. 
The experiment set-up is composed of a Mechanical Os-
cillator (the blue unit in the foreground) [7a], a Function 
Generator (the white unit with a digital display panel) 
[7b], an Oscillator Amplifier (the white unit sitting on 
the Function Generator) [7c], and an Ammeter (the blue 
rectangular unit adjacent to the Amplifier) [7d]. The vi-
brating elastic media is a rectangular plastic strip [8]; it is 
a 86.36 cm × 1.3 cm rectangle. It is mounted horizontally 

with its one end fastened to the oscillator and its other 
end running over a horizontal brass rod being pulled with 
a hanging weight. For our experiment incorporating the 
accuracy of the measured quantities, such as the masses, 
gravity constant, and lengths, yields to a 0.6% systematic 
error, i.e. fn = fn ± 0.6%. 

l
l

It is the objective of this phase of our experiment to 
verify whether this one-dimensional formulation is just 
for the two-dimensional rectangular strip. Applying the 
above formulation to the rectangle the predicated fre-
quencies along with the systematic errors are tabulated in 
Table 2. The table contains the associated measured fre-
quencies as well. 
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Figure 3. Fifth normal mode of the standing wave of an 
inhomogeneous line with inhomogeneity parameter = 10.0. 

 

     
(a)                           (b) 

Figure 4. The left photo (a) is the photo of the hardware, 
the right photo (b) is the actual experiment set-up. 
 
Table 2. The first column is the number of the loops, the 
second and the third columns are the data and the corre-
sponding range of theoretical frequencies, respectively. 

n exp (Hz) theory(Hz) 
2 18 18.4 - 18.6 
3 30 27.6 - 27.9 
4 38 36.8 - 37.2 
5 46 46.0 - 46.5 
6 56 55.2 - 55.8 
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An experienced reader who worked in physics labs 
and who is familiar with the “standing wave experiment 
in a homogeneous line”[9] would agree that judging the 
formation of perfect standing waves are subjective; the 
same applies to a two-dimensional strip. Hence, the mea- 
sured frequencies entered in the second column of Table 
2 should not be considered as absolute. Therefore, with 
this notion according to Table 2 there is a reasonable 
agreement between the data and the theory. Accordingly, 
we conclude that the fundamental frequency equation 
given in the previous paragraph is applicable to a two- 
dimensional homogeneous strip. 

Now we move on to the two-dimensional model rep-
lica. Figure 5 depicts a homogeneous isosceles triangle 
with the height and base length of  and 2h, respectively. 
Its center of mass (c.m.) is along the x-axis and is 

 2 2 3D
cmx l . On the other hand for a 1D line with 

monotonically increasing density,  

   0 1x l x       

the coordinate of the c.m. is  

     1 1 2 1 3 1 1 2D
cmx l          . 

For large values of   these two coincide. That is to say 
a 2D homogeneous isosceles triangle acts as a 1D inho-
mogeneous line provided the in homogeneity parameter 
is “large”. The largeness of the latter is subjective; we 
look more on this topic in the next paragraph. 

The drawing in Figure 5 is to be compared to the ac-
tual strip used in the experiment; see photo 4b. To con-
tinue with our experiment, we replace the rectangular 
strip with the isosceles triangular one. The measured 
frequencies of the associated standing waves are tabu-
lated in Table 3. 

 

 

Figure 5. Display of a homogeneous isosceles triangular 
plastic strip. 

With our set-up we were able distinctly observe the 
first three standing waves with corresponding three, four 
and five loops. By comparing Tables 2 and 3 one real-
izes their common features; e.g. the higher the number of 
loops the higher the frequencies. However, the measured 
frequencies tabulated in these two tables are considerably 
different. 

Now the question is “What are the appropriate values 
of the  ?” To answer this question we propose a semi- 
empirical approach. It is plausible to assume the speed of 
the progressive waves for the rectangular and the trian-
gular strips are the same; this is because they are cut out 
from the same plastic sheet and have almost comparable 
dimensions. The frequency of the n-th mode for the uni-
form rectangle is    01 2π 2π 2unifrom

nf v l n  and for the 
nonuniform triangular strip is   01 2πnonuniform

n nf v k . 
Dividing these two equations yields 

   1 nonuniform unifrom
n n nk l f f  . 

For the chosen n utilizing the measured frequencies of 
Table 2 and 3, we evaluate the corresponding value of kn. 
Then we solve (6) and search for the   conducive to 
the same value of nk  ; in practice this requires pa-
tience! Results are tabulated in Table 4. 

According to Table 4 different normal standing modes 
require different inhomogeneity parameter  ; this was 
observed [4]. Utilizing Table 4 we search for  (n). The 
search yields,  n a n    with  

 i.e. with our approach 
we have established a semi-empirical analytic relation-
ship between the in homogeneity parameter 

 .2662,11a 
0.32218, 5.40783   

  and the 
number of loops. This has been observed, however the 
method is different [4]. Now we take a step backward 
and visit the issue “How viable is our proposed triangular 
isosceles model replica?” Let’s remind ourselves that a 
perfect model requires a “large”  . Our evaluated  ’s 
are tabulated in Table 4. Figure 6 shows the deviation of 
the characteristics of the proposed model replica vs. a 
perfect case. 

In Figure 6 the dot on each line is the coordinate of 
the c.m. for   = 1.3, 1.5 and 2.5, respectively. The 
black vertical line is the position of the c.m. for    
“ ”. The Gray vertical line is the position of the c.m. 

 
Table 3. The first column is the number of the loops of the 
standing waves and the second column is its associated 
measured frequencies. 

n exp (Hz) 

3 24 

4 33 

5 43 
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Table 4. The first column is the number of the loops of the 
standing waves; the second column is its associated inho-
mogeneity parameter . 

n exp (Hz) 

3 2.5 

4 1.8 

5 1.3 

 

 

0.2 0.4 0.6 0.8
x,m

1.5

2.0

2.5

3.0

3.5

　　x　

 

Figure 6. The solid slanted lines are the plots of  x   

 0 1 l x     for 0  = 1.0, = 0.81 m and = 1.3, 1.5 

and 2.5 corresponding to green, red and blue, respectively. 



 
for a uniform one-dimensional line. Accordingly, the 
accuracy of our proposed two-dimensional replica is 
within 11% to 15%, corresponding to   values 2.5 to 
1.3, respectively. 
 
 
5. Conclusions 
 
The author had two major objectives tackling the pro-
posed problem. 1) Utilizing a Computer Algebra System 
(CAS) such as Mathematica to analyze symbolically and 
numerically the various aspects of the progressive waves 
conducive to standing waves in an inhomogeneous line. 
2) Devise an experiment verifying the feasibility of the 
proposed theoretical analysis in a real-life setting. Con-
cerning the first objective throughout the article it is 
shown how the traditional approach effectively is substi-
tuted with a CAS. The advantages of the latter are nu-
merous, e.g. the ODEs are solved symbolically, where as 
algebraic equation are solved numerically; graphs and 
animations as well as numeric tables all are housed in 
one single file. The “What-if scenarios” are tested pa-
tiently but at ease. Consequently, the time and the effort 
aved is invested in inventing a model replica testing the 

applicability of the theoretical proposal. The proposed 
model is not perfect. It is capable of producing results 
that at best is agreeable within 11% and at worst to a 
15% of data. Interested readers are left proposing alter-
nate one-dimensional as well as two-dimensional replica 
designs leading to better empirical errors. The author 
eagerly also examined various additional theoretical mo- 
dels such as a quadratic inhomogeneous line with density 
function,    2 2

0 1x l x      . Its corresponding 
position dependent ODE [see Equation (5)] utilizing 
Mathematica’s symbolic differential equation solver 
[DSolve] yields an analytic solution. As a matter of fact 
symbolic solubility of the latter is expected because the 
quadratic density function is somewhat similar to the 
harmonic potential that one encounters in 
one-dimensional quantum mechanics yielding the Her-
mite polynomials. The interested reader following the 
detailed outlined steps of this article is encouraged inves-
tigating the characteristics of the latter density function 
and design a model replica yielding an acceptable 
agreeable data. 
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