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ABSTRACT 
 

Background: Many publications discussed the potential role of medicinal plants in the 
management of COVID-19. However, clinical studies of the efficacy and safety of specified 
phytochemical(s) are limited.  
Objectives: To explore the pharmacological profile of specified compounds against COVID-19 
Method: Systematic literature search of academic databases to explore specified phytochemicals 
for the management of COVID-19 using appropriate search terms. Rayyan software was used to 
organize 786 citations of which. 236 articles were included in this review.  
Results: Initially 70 compounds were identified to have a potential role in the management of 
COVID-19. In this review, 18 compounds were selected for further search 
Conclusion: In vitro anti-SARS-CoV-2activity has been demonstrated for a variety of natural 
compounds. However, preclinical research for most phytochemicals is scarce, and only a few 
compounds have been evaluated in clinical trials against COVID-19. A comprehensive 
pharmacological profile of these phytochemicals is urgently needed. 
 

 
Keywords: Phytochemicals; COVID-19; SARS-CoV-2; flavonoids; alkaloids; essential oils. 
 

1. INTRODUCTION 
 

Coronavirus disease 2019 (COVID-19), which 
was first reported in Wuhan, China, in December 
2019, is an ongoing global pandemic, highly 
infective respiratory viral illness. It is caused by 
severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). It leads to extreme human and 
economic losses. As of 29 June 2021, more than 
181 million cases have been identified, with more 
than 3.92 million confirmed deaths [1]. More 
details are available in these reviews [2-4]. The 
development of diagnostic tests, vaccinations, 
and medications for COVID-19 management has 
received a lot of attention [5]. 
 

Numerous meta-analyses have shown the 
potential beneficial role of medicinal plants in 
reducing the severity of COVID-19 when 
combined with standard pharmacological therapy 
[6-30]. Most clinical trials involved Chinese herbs 
[10, 12-15, 17, 18, 20, 22-29], few studies 
discussed the role of herbal medicine in specific 
countries, such as Nigeria [16] or India, [19]. 
Some clinical trials focused on a single plant or 
food as bee products [7, 11], plant-derived food-
grade substances [21], Lianhua Qingwen (a 
Chinese herbal medicine) [28, 30]. However, it 
should be noted that integrated research on 
isolated phytochemicals (pure substances) is 
sparse, which may explain why most decision-
makers are reluctant to study the efficacy and 
safety of phytochemicals in COVID-19 clinical 
studies. Therefore, the goal of this systemic 
review is to explore the potential role of 
phytochemicals in the management of COVID-
19. 

2. METHODS 
 
Two databases were used, namely PubMed 
(NCBI), Lit-COVID 19, last accessed in 
November 2021. The research was restricted to 
2019-2021, full text, and English language.              
All citations were imported to endnote 8, 
duplicates were excluded. Rayyan program                
(for Systemic review) was used to organize              
and select the relevant articles [31].                    
PRISMA flow chart is shown in Fig. A                  
[32]. 

 
The first objective was to identify 
phytochemical(s) for the management of COVID-
19. The 2

nd
 objective explores the efficacy and 

safety, pharmacology of specified 
phytochemicals. The study was conducted in two 
phases, search terms in phase one were: # 1 " 
SARS-CoV-2" OR" COVID-19 ", OR" 
coronavirus". # 2: "Phytochemical*" OR" 
medicinal plants", OR "herbal medicine" followed 
by advanced (combined) search: #1 AND#2. 70 
compounds were identified to have potential 
activity against the coronavirus (Tables 1-3). 18 
compounds were selected by two investigators: 
given their low IC50 against SARS-CoV-2, 
immunomodulating effect and good safety profile. 
Key terms in phase 2: each of the 
phytochemicals e.g. # 3Thymoquinone, 4 # " 
clinical trial " OR " antiviral " OR " anti-
inflammatory " OR "lung injury" OR 
"Pharmacokinetic" OR "Formulation" OR 
"safety". Followed by advanced search #3 AND 
#4. 

https://en.wikipedia.org/wiki/Pandemic
https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2
https://en.wikipedia.org/wiki/COVID-19_pandemic_cases
https://en.wikipedia.org/wiki/COVID-19_pandemic_cases
https://en.wikipedia.org/wiki/COVID-19_pandemic_deaths
https://en.wikipedia.org/wiki/COVID-19_pandemic_deaths
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Fig. A. PRISMA flow chart of the search for safety and efficacy of specified phytochemicals 
against COVID 19 

*1- Only journals were included, 2- Only review articles, systemic reviews, clinical trials were included 

 
Abbreviations and glossary of terms 
 
ACE2 : Angiotensin converting enzyme-2. 
ALI : Acute lung injury. 
COVID-19 : Coronavirus disease 2019. 
CPE : Cell-protective effects. 
FDA : Food and Drug Administration. 
IC50/EC50 values : The 50% inhibitory and effective concentration 

respectively. 
LPS : Lipopolysaccharide. 
M Wt. : Molecular weight. 
Mpro : Main protease. 
PK : Pharmacokinetics; describes absorption, distribution, 

metabolism, and elimination of drugs. 
PLpro : Papain like proteases, and 3CLpro: 3-chymotrypsin like 

protease: enzymes essential for viral replication. 
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SARS : Severe acute respiratory syndrome. 
SARS-CoV or SARS-CoV-1 : severe acute respiratory syndrome coronavirus 1, is a 

strain of virus that causes SARS. 
SARS-CoV-2 : severe acute respiratory syndrome coronavirus 2, that 

causes COVID-19. 
 

3. POTENTIAL ROLE OF PHYTO-
CHEMICALS IN THE MANAGEMENT 
OF COVID-19 

 

3.1 Overview 
 

A comprehensive web-based resource for natural 
products (about 200 compounds) was launched 
in 2020 [33]. Several review articles included an 
extensive search for medicinal plant extracts, 
compounds that have been identified and proven 
to suppress the life cycle of the coronavirus. 
These reviews summarized the IC50, selectivity, 
mechanisms of action and structure of specified 
compounds as polyphenols [34-36], flavonoids 
[37,38] of which myricetin and scutellarin [39] 
were highlighted. Alkaloids [40,41] particularly 
lycorine [42,43] was of considerable interest, 
other alkaloids include tetrandrine, tangchinoline, 
cepharanthine [44] and reserpine [45]. Other 
classes of phytochemicals include: sterols [46], 

terpenoids [47,48], stilbenoid, resveratrol [49], 
triterpene glycoside (saponin) glycyrrhizin [50], 
and saponin (Aescin) [45]. Tannins (tannic acid), 
3-isotheaflavin-3-gallate, theaflavin-3,3′-digallate 
[51], and essential oils [52-54]. 
 
Many publications provided an overview of the 
utility of phytochemicals against COVID-19 [55-
57]. Some provided a detailed description of a 
specified compound(s) e.g., curcumin [58], 
valinomycin [59], tanshinones [60], resveratrol 
[61] and glycyrrhizin [62]; or plant e.g. Nigella 
sativa [63]. A non-comprehensive list (about 70 
compounds) was provided in Tables 1-3. From 
this list, 18 compounds were selected for further 
search to explore their pharmacological profile 
(their structure is provided in Fig. 1). The 
selection was based on low IC50, 
immunomodulating effect and known safety 
profile by two authors. 

 

   
Thymoquinone Lycorine Glycyrrhizin 

   
Resveratrol Emodin Aescin   

  
. 

Eugenol Gingerol Ginsenoside-Rb1 

  
 

Eucalyptol Cinnamaldehyde Kaempferol 

https://en.wikipedia.org/wiki/Stilbenoid
https://en.wikipedia.org/wiki/Saponin
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Celastrol  Rutin 

 

 

 

 
Leptodactylone 

Curcumin Tetrandrine 

 

Betulinic acid 
 

Fig. 1. Structure of selected phytochemicals of a potential role in the management of COVID- 
19 

 
Table 1. Compounds suggested interacting with the specified target(s) of SARS-CoV-2: Spike 

protein, 3CLpro or PLpro [33] 
 

Compound Class/ source mechanism 

Betulinic acid Pentacyclic triterpenoid 3CLpro 
Dihomo-γ-linolenic acid ω−6 fatty acid 3CLpro 
Dihydrotanshinone Salvia miltiorrhiza Spike protein 
TanshinoneIIa Salvia miltiorrhiza PLpro and 3CLpro 
Cryptotanshinone Quinone PLpro and 3CLpro 
Lignan Low M Wt. polyphenols 3CLpro 
Moupinamide A phenolic amide PLpro 
N-cis-feruloyl tyramine A phenolic amide PLpro and 3CLpro 
Coumaroyl tyramine A phenolic amide PLpro and 3CLpro 
Quercetin Flavonol PLpro and 3CLpro 
Kaempferol Flavonol PLpro and 3CLpro 
Sugiol A diterpene 3CLpro 

 

3.2 Pharmacological Profile of Selected 
Phytochemicals 

 

Out of 18 selected phytochemicals (Fig. 1), two 
clinical trials were found, the 1

st
 trial revealed that 

resveratrol, reduces angiotensin converting 
enzyme-2 (ACE2) expression in human adipose 
tissue [75]. The 2

nd
 trial documented that, nano-

curcumin treatment is a promising technique for 
controlling inflammatory cytokines in COVID-19 

patients [76]. Aescin (was registered in China 
and Italy for clinical trials to demonstrate its 
potential role as an adjuvant in the management 

of COVID‐19 [77]. 
 
The following is a summary of what has been 
collected regarding the pharmacology profile of 
these compounds, with a focus on their potential 
role against COVID-19. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/celastrol
https://en.wikipedia.org/wiki/Triterpenoid
https://en.wikipedia.org/wiki/Omega-6_fatty_acid
https://en.wikipedia.org/wiki/Salvia_miltiorrhiza
https://en.wikipedia.org/wiki/Salvia_miltiorrhiza
https://en.wikipedia.org/wiki/Polyphenol
https://en.wikipedia.org/wiki/Flavonol
https://en.wikipedia.org/wiki/Flavonol
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Table 2. Example of compounds with IC50/EC50 values tested against an infectious coronavirus 
[64] 

 

Compound Chemical group IC50/EC50 values Coronavirus type 
targeted 

Glycyrrhizin Saponin EC50 = 364.5 μM SARS-CoV 
Tetra-O-galloyl-β-D-glucose Polyphenol EC50 = 4.5 μM SARS-CoV 
Luteolin Flavonoid EC50 = 10.6 μM SARS-CoV 
Sinigrin Polyphenol IC50 = 217 μM SARS-CoV 
β-Sitosterol Phytosterol IC50 = 1210 μM SARS-CoV 
Hesperetin Flavonoid IC50 = 8.3 μM SARS-CoV 
Amentoflavone Flavonoid IC50 = 8.3 μM SARS-CoV 
Luteolin Flavonoid IC50 = 20.2 μM SARS-CoV 
Quercetin Flavonoid IC50 = 23.8 μM SARS-CoV 
Isobavachalcone Flavonoid IC50 = 7.3 μM SARS-CoV 
Psoralidin Flavonoid IC50 = 4.2 μM SARS-CoV 
Tomentin A Flavonoid IC50 = 6.2 μM SARS-CoV 
Tomentin B Flavonoid IC50 = 6.1 μM SARS-CoV 
Tomentin E Flavonoid IC50 = 5.0 μM SARS-CoV 
3′-O-Methyldiplacol Flavonoid IC50 = 9.5 μM SARS-CoV 
Isoliquiritigenin Flavonoid IC50 = 61.9 μM SARS-CoV 
Kaempferol Flavonoid IC50 = 116.3 μM SARS-CoV 
Kazinol F Flavonoid IC50 = 43.3 μM SARS-CoV 
Broussochalcone B Flavonoid IC50 = 57.8 μM SARS-CoV 
Papyriflavonol A Flavonoid IC50 = 103.6μM SARS-CoV 
Terrestrimine Cinnamic amide IC50 = 15.8 μM SARS-CoV 
Blancoxanthone Xanthone EC50 = 3 μg/ml HCoV 229E 
Pyranojacareubin Xanthone EC50 = 15 μg/ml HCoV 229E 
Lycorine Alkaloid EC50 = 15.7 IU/ml SARS-CoV 
Tingenone Triterpene IC50 = 9.9μM SARS-CoV 
Iguesterin Triterpene IC50 = 2.6μM SARS-CoV 
Pristimererin Triterpene IC50 = 5.5μM SARS-CoV 
Dihydrotanshinone I Diterpene IC50 = 4.9 μM SARS-CoV 
Cryptotanshinone Diterpene IC50 = 0.8 μM SARS-CoV 
Tanshinone IIA Diterpene IC50 = 1.6 μM SARS-CoV 
Xanthoangelol Chalcone IC50 = 11.4 μM SARS-CoV 
Hirsutenone Diarylheptanoid IC50 = 3.0 μM SARS-CoV 
Rubranoside Diarylheptanoid IC50 = 7.2 μM SARS-CoV 
Curcumin Diarylheptanoid IC50 = 5.7 μM SARS-CoV 
Flt3 receptor-interacting lectin (FRIL). Lectin EC50 = 6.25 μg/ml SARS-CoV-2 
Abrus precatorius (APA) Lectin Lectin EC50 = 0.45 μg/ml SARS-CoV 
Urtica dioica agglutinin (UDA) Lectin Lectin EC50 = 1.3 μg/ml SARS-CoV 
Other compounds are not listed above. Resveratrol, EmodinAescin, Ginsenoside-Rb1, Leptodactylone, 
Celastrol, Tetrandrine, Cepharanthine, S-aikosaponinB2, Quercetin-3-b-galactoside, Chalcones,  Theaflavin, 
Myricetin, Scutellarein[40, 65-70]. 
Essential oils with potential antiviral and immunomodulating activity,8-cineole (eucalyptol), allyl sulfide, 
farnesene, farnesol, nerolidol; eugenol, menthol, carvacrol, cinnamaldehyde [71-74] 
 

3.2.1 Thymoquinone 
 
It is a quinone compound found in the seeds of 
Nigella sativa (Ranunculaceae) It has a broad 
pharmacological activity, and a good safety 
profile [78]. Its potential role in the management 
of COVID -19 was suggested based on its 
antiviral activity and ability to attenuate lung 
injury and inflammation [79-82]. Thymoquinone 
has poor oral bioavailability [83] likely due to its 

low solubility in water. Pharmaceutical 
formulations and nano delivery systems were 
suggested to improve their bioavailability and 
distribution [84-86]. 
 
3.2.2 Lycorine 
 
Lycorine is a phenanthridine alkaloid isolated 
from the bulbs of Lycoris radiata 
(Amaryllidaceae). It has broad pharmacological 
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activity [87], it has potent activity against SARS-
CoV [42]. Its ability to suppress SARS-CoV-2 
replication was confirmed in Viro-6 cells, the 
EC50 of lycorine, and chloroquine were, 0.18 and 
1.36 μM, respectively, CC value >40 μM [69]. An 
animal study showed its very high volume of 
distribution and short half-life [88]. More, pre-
clinical investigations are needed to determine 
other PK parameters such as protein binding and 
metabolism. Lycorine, in particular, has a wide 
range of pharmacological effects on a variety of 
disorders while having relatively low toxicity and 
minimal side effects [89]. 
 
3.2.3 Glycyrrhizin 
 
It is triterpene glycoside (saponin), which is also 
known as glycyrrhizinic acid isolated from the 
roots of Glycyrrhiza glabra (Fabaceae). It has 
several pharmacological activities [90]. The 
compound or its active metabolite expresses 
antiviral effects against SARS-CoV in cell 
culture[91]. In vitro studies demonstrated that 
glycyrrhizin potently neutralizes SARS-CoV-2by 
inhibiting the viral main protease (Mpro)[92]. It 

exhibited anti‐inflammatory potential by several 
mechanisms including suppression of several 
proinflammatory mediators [93]. Its low 
bioavailability, low volume of distribution suggest 
that it is not likely to achieve an effective antiviral 
concentration of glycyrrhizin in lung tissues by 
oral or IV administration of safe doses 150-300 
mg/day. An advanced delivery system such as 
inhalation can be considered to enhance its 
access to lung tissues. 
 
3.2.4. Aescin(escin) 
 
It's a blend of triterpene saponins extracted from 
the seeds of the horse chestnut tree; Aesculus 
Hippocastanum (Sapindaceae). It has a high 
molecular weight [94]. It possesses antiviral and 
immunomodulatory activities [95]. It has been 
widely used in the treatment of traumatic induced 
oedema, and chronic venous insufficiency [96]. It 
was demonstrated to inhibit acute inflammation 
similar to corticosteroids [45]. Its EC50 against 

SARS‐CoV was 6 µM [45]. Given these 
pharmacological characteristics; it was 

suggested to consider escin as an add‐on 
therapy in acute lung injury (ALI) associated with 

severe COVID‐19 infection [96]. Injection 
formulation was registered in China and Italy for 

clinical trials to treat patients with COVID‐19 
pneumonia [77]. Aescin is not absorbed orally 
(bioavailability< 0.3%); likely due to extensive 
first-pass metabolism [97]. Aescin PK features 

were studied in rats following IV injection at 
dosages ranging from 0.5 to 2.0 mg/kg. The half-
life of Aescin was about 7-12 hr., Vd : 3-6 
L/Kg[97]. PK data in humans not available. 
 
3.2.5 Resveratrol 
 
Resveratrol, a polyphenol compound (3,5,4'-
trihydroxystilbene) found in grapes; Vitis vinifera 
(Vitaceae); Mulberry or Morus nigra (Moraceae) 
and Peanuts or Arachis hypogaea (Fabaceae). It 
possesses antioxidant, antitumor, antiviral and 
free radical scavenging properties [98]. Among 
the seven drugs tested against HCoV-229E in 
vitro, resveratrol demonstrated a favourable 
antiviral effect (EC50) = 4.6 µM which was 
superior to two drugs namely lopinavir/ritonavir 
(EC50 = 8.8 µM), and Chloroquine (EC50 = 5 µM). 
Resveratrol has also the best selectivity index 
(SI) of 45.65 [70]. It showed the ability to 
attenuate lung injury in animal models [99]. In 
this context, studies documented its ability to 
reduce biomarkers of inflammation, tumor 
necrosis factor (TNF-α), and C-reactive protein 
[100]. 
 
Resveratrol has poor oral bioavailability due to 
extensive metabolism in the gastrointestinal tract 
(GIT) and liver. It has a very short half-life, but its 
active sulfate metabolites showed a half-life of 
about 8 hr. It was speculated that levels of 
resveratrol in serum after oral administration are 
not likely to achieve an effective antiviral level 
[99]. However, the optimized pharmaceutical 
formulation may solve this limitation e.g., 
nanotechnology-based formulations and 
liposomes [72,101]. Clinical studies showed 
favorable safety outcomes of resveratrol. A good 
safety profile was assured with doses up to 500 
mg/d for 60 days [102]. Most reported adverse 
effects are mild GIT symptoms such as diarrhea 
[103]. However, an advanced delivery system is 
needed to improve its PK profile. 
 
3.2.6 Emodin 
 
Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) 
is found in many plants such as Chinese 
rhubarb; Rheum palmatum (Polygonaceae) 
[104]. It has many effective preventive and 
therapeutic effects [105]. Emodin was 
demonstrated to block the binding of SARS-CoV 
spike protein binding to its ACE2 receptors, 
hence it is likely to block viral entry into host cells 
[66]. It is one of the top 16 network-predicted re-
purposed drugs against SARS-CoV and is 
suggested among drug combinations (toremifene 

https://en.wikipedia.org/wiki/Moraceae
https://en.wikipedia.org/wiki/Biomarker
https://en.wikipedia.org/wiki/Inflammation
https://en.wikipedia.org/wiki/TNF-%CE%B1
https://en.wikipedia.org/wiki/C-reactive_protein
https://en.wikipedia.org/wiki/Rheum_palmatum
https://en.wikipedia.org/wiki/Rheum_palmatum
https://en.wikipedia.org/wiki/Rheum_palmatum
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plus emodin) [106]. It is included among 
traditional Chinese medicine against viral 
infections [107]. Its ability to attenuate lung injury 
is well documented in an animal model [108]. In 
animal studies, it has poor oral bioavailability due 
to extensive metabolism by glucuronidation. 
Emodin can cause reproductive, liver, and kidney 
toxicity, especially after chronic use [109]. 
 
3.2.7 Ginsenoside-Rb1 (G-Rb1) 
 
G-Rb1 appears to be most abundant in Panax 
quinquefolius (Araliaceae) (American Ginseng). 
Ginsenosides possesses a variety of potential 
health effects [110]. The ability of ginseng to 
attenuate experimentally induced lung injury are 
well documented and several mechanisms were 
suggested to explain its pharmacological effect 
[111]. Molecular docking analysis indicated that 
ginsenosides have the potential to inhibit the 
SARS-CoV-2 Mpro receptor [112]. Genesiondis 
have very low bioavailability after oral 
administration [113]. Several studies 
documented the feasibility of enhancing its 
bioavailability by adopting several 
pharmaceutical technology approaches [114, 
115]. When ginseng extract was standardized at 
a concentration of 4 mg ginsenosides/100 mg 
capsule and given at a dose of up to 114 g 
ginsenoside/kg to humans for up to 12 weeks, no 
significant adverse effects were demonstrated 
[116]. 
 
3.2.8 Eugenol 
 
It is a phenolic molecule (methoxy phenols, M Wt 
164.2) found in several plants such as cinnamon 
Cinnamomum (Lauraceae), clove Syzygium 
aromaticum (Myrtaceae), Tulsi Ocimum 
tenuiflorum (Lamiaceae). The potential value of 
clove and eugenol against COVID-19 was 
suggested based on their antiviral, anti-
inflammatory, and antithrombotic effects [117]. 
Docking analysis indicated the possible 
interaction of α-pinene and eugenol with SARS-
CoV spike protein [118]. The ability of eugenol to 
attenuate experimentally acute induced lung 
injury was documented [68]. It is likely mediated 
by the inhibition of lipoxygenase and 
cyclooxygenase pathways [119]. 
 
In mice, eugenol was ready absorbed after oral 
administration. The mean plasma half-life was 
about14 hrs. suggesting a potential accumulation 
of the drug following repeated administrations 
[120]. A good safety profile was demonstrated in 
animal toxicity studies [121]. It is generally 

recognized as safe by the food and drug 
administration (FDA) [122]. However, local 
hypersensitivity reaction was reported in dental 
practice [123]. Based on its pharmacology 
profile, it is strongly recommended for pre-clinical 
studies and clinical studies, optimized 
formulations to explore its utility in the 
management of respiratory viral infections. 
 
3.2.9 Gingerol 
 
Gingerol, (6-gingerol) is a phenolic compound 
found in fresh ginger, Zingiber officinale 
(Zingiberaceae). Pre-clinical in vitro and animal 
models documented a broad spectrum of 
therapeutic values[124], The favorable impact of 
ginger and its active ingredients on the immune 
system are extensively studied, in vitro studies 
included; modulation of inflammatory cytokines 
levels [125], inhibition of lipopolysaccharide 
(LPS)-induced inflammatory responses in 
macrophages 126], the potential of the anti-
inflammatory effect of some drugs such as 
paracetamol [127]. Other studies documented 
the therapeutic benefits in the management of 
allergic asthma and allergic rhinitis [128, 129]. 
Pharmacokinetic (PK) studies showed that, in 
general, is well absorbed orally and has good 
tissue distribution [130,131]. A good safety profile 
was reported in clinical trials [132], several 
pharmaceutical nanotechnology approaches 
were suggested to enhance its systemic 
availability or distribution [133, 134]. 
 
3.2.10 Eucalyptol (1,8-cineole) 
 
It is a cyclic ether and monoterpenoid, it controls 
airway mucus hypersecretion and asthma via 
anti-inflammatory cytokine inhibition. It is 
abundant in many Eucalyptus species 
(Myrtaceae) [135]. It has low toxicity (LD50 for 
rats 2.5 g/kg) [116]. It showed the ability to 
attenuate ALI in an animal model by different 
mechanisms [136,137]. A comprehensive review 
of the ability of essential oil to suppress several 
respiratory viruses was studied by Wani et al. 
[138]. Eucalyptus essential oils have been used 
to treat a variety of respiratory diseases, 
including sinusitis, pharyngitis, and bronchitis. 
One of its active ingredients (1,8-cineole), 
showed smooth muscle relaxant effects [139]. 
Furthermore, investigations have shown that 
inhaling cineole has analgesic and anti-
inflammatory properties, suggesting that it could 
be utilized to treat chronic obstructive pulmonary 
disease (COPD) and asthma [140]. Sharma et al. 
[141] used molecular docking to show that 

https://en.wikipedia.org/wiki/Ginsenoside
https://en.wikipedia.org/wiki/Phenol
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eucalyptol (1,8-cineole) may bind to Mpro and 
suppress viral multiplication. Strong ionic, 
hydrogen bonds and hydrophobic interactions 
have been described in the eucalyptol/Mpro 
complexes. 
 
Several investigations found that eucalyptus oil 
and its active component, eucalyptol, have 
strong immunomodulatory activities. They were 
able to reduce the release of pro-inflammatory 
cytokines from macrophages and monocytes 
while maintaining their phagocytic properties 
[142]. 
 
In conclusion, it has an anti-inflammatory, 
bronchodilator, antibacterial effect, mucolytic, 
and antiviral activity. It is well absorbed orally, 
can be inhaled, and has good lipophilicity which 
suggests adequate access to lung cells. It has a 
good safety profile; therefore, the compound is 
suggested for more investigations in the 
management of respiratory viral infections. 
 
3.2.11 Cinnamaldehyde 
 
Cinnamaldehyde is an active ingredient in the 
bark of Cinnamon trees Cinnamomum verum 
(Lauraceae). The essential oil of cinnamon bark 
contains> 90% cinnamaldehyde (predominantly 
the Trans E- isomer) synthetic compound is also 
available. According to docking experiments, 
cinnamaldehyde may prevent SARC-CoV-2 from 
attaching to its target receptors [143]. 
Cinnamaldehyde's preventive benefits in the 
animal model of ALI have been demonstrated 
[144]. Different mechanisms were demonstrated; 
including neutrophils, macrophages, and total 
cell number in bronchoalveolar lavage fluid is 
inhibited. It reduced the levels of inflammatory 
cytokines such TNF-, interleukin (IL-6), IL-13, 
and IL-1 [145]. 
 
Cinnamaldehyde is approved by the FDA for use 
within allergenic percutaneous patch tests[146]. 
It has had a low potential for toxicity but weak 
sensitization reactions in animals and human 
skin allergy were reported [147]. It is metabolized 
to cinnamyl alcohol and methyl cinnamate and 
cinnamic acid, these compounds are potentially 
toxic [146]. In acute studies, these materials 
have a low to moderate order of oral toxicity 
(LD50 values of 1.5–39 g/kg body weight) [148]. 
 
About 52% of cinnamaldehyde is absorbed 
through the skin and shown to be rapidly 
absorbed from the gut. It is metabolized and 
excreted as polar metabolites, the final major 

urinary metabolite is hippuric acid [148]. Novel 
intravenous sub-micrometre emulsion showed 
good tissue distribution and enhanced antitumor 
efficacy without significant toxicity in an animal 
model of cancer [149]. 
 
3.2.12 Kaempferol (KMF) 
 
Kaempferol (3,5,7-trihydroxy-2-(4-
hydroxyphenyl)-4H-chromen-4-one) is a 
polyphenol abundant in fruits and vegetables, 
herbal medications, and beverages derived from 
plants. It's used to treat a variety of diseases 
[150]. Several studies suggested KMF has 
superior efficacy compared to many other natural 
compounds against SARS-CoV-2 [151,152]. 
KMF shares structural similarities with other 
flavonoids such as myricetin and 
dihydromyricetin, which showed strong inhibitory 
activity against the 3-chymotrypsin like 

protease(3CLpro) of SARS‐CoV‐2 [153]. KMF 
was shown to inhibit MERS 3CLpro (IC50 = 
35.3 μM) and SARS 3CLpro (IC50 = 116.3 μM) 
[154]. Molecular docking documented strong 

interaction of KMF with SARs‐CoV‐2 Mpro 
3CLpro [155]. This finding was confirmed by 
another docking study, which also documented 
an inhibition rate of about 90 % at a 
concentration of 62.5 µM cell protective effect 
(CPE) inhibition assay. The authors concluded 
that KMF was found to protect cells against virus-
induced cell death, suggesting that it could be a 
promising SARS-CoV-2 antiviral treatment [151]. 
 
The ability of KMF to attenuate the 
experimentally induced lung injury are well 
documented, various mechanisms were 
suggested [156,157]. KMF is expected to show 
low bioavailability, therefore several studies 
suggested the utility of pharmaceutic approaches 
such as phospholipid complexes; solid dispersion, 
self-emulsifying formulation to enhance its 
bioavailability [158], Nano formulations were also 
investigated to improve PK characteristics of 
KMF [159]. On the other hand, KMF was found to 
enhance the bioavailability of some drugs after 
oral administration [160]. 
 
3.2.13 Rutin 
 
Rutin, (a glycoside) also known as rutoside or 
quercetin-3-O-rutinoside, is a citrus flavonoid 
found in a range of plants, including Citrus 
(Rutaceae) and Buckwheat or Fagopyrum 
esculentum (Polygonaceae) species [161]. 
Several computations and in vitro testing suggest 
its activity against SARS-CoV-2 [162,163]. Based 

https://en.wikipedia.org/wiki/Bark_(botany)
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on the crystal structures of 3CLpro and RdRp, 
docking studies revealed that sulfate or 
glucuronide metabolite of rutin can inhibit these 
enzymes; which are essential for replication of 
SARS-CoV-2 [164]. Moreover, it demonstrated a 
good ability to attenuate experimentally induced 
ALI [165], and potent thrombolytic activity [166]. 
 

Before being absorbed into the circulation, 
rutinosides like rutin and nicotiflorin are 
deglycosylated and subsequently conjugated 
mostly with glucuronate and sulfate, which are 
the predominant forms in plasma [167]. 
Intravenous or intranasal administration was 
suggested to improve the delivery of ruin [164]. 
Despite several preclinical mechanistic studies 
on its anticancer activities, the lack of well-
designed randomized clinical trials on rutin's 
safety and therapeutic activity highlights the need 
for greater clinical research [168]. 
 

3.2.14 Leptodactylone 
 

It is a coumarin isolated from Leptodactylon 
pungens (Polemoniaceae) and Linanthus 
demissus (Polemoniaceae )species, [169]. In 
vitro study was applied in Vero-E6 cells infected 
by SARS-CoV and measured the CPE by 
fluorescence microscope revealed that it 
produced 60 % protection of the infected cells 
(EC %) at 100 micro mols [170]. PK and safety 
data of Leptodactylone are not available. 
 

3.2.15 Celastrol 
 
It is a pentacyclic triterpenoid (belong to 
triterpene quinine methides) extracted from 
Tripterygium wilfordii ( Celastraceae) [171]. It has 
broad pharmacological activities [172]. Celastrol 
inhibits SARS-CoV-2 Mpro 3CLpro and acts as a 
superoxide radical scavenger, according to 
docking and other relevant studies [173]. 
Moreover, it showed promising in vivo results in 
animal models for inflammatory pulmonary 
diseases [174]. In rats, the pure compound 
showed poor bioavailability which improved after 
using an optimized tablet dosage form [175]. 
Several studies showed the utility of 
pharmaceutical techniques to enhance its PK 
characteristics [176,177]. However, liver and 
kidney induced toxicity was demonstrated in 
animal studies [178]. More studies are needed to 
clarify the safety concern. 
 

3.2.16 Tetrandrine (TET) 
 
It is a bis-benzylisoquinoline alkaloida calcium 
channel blocker. It is isolated from the plant 

Stephania tetrandra (Menispermaceae). It has 
immunomodulatory effects and was found to be 
beneficial against inflammation, and lung cancer 
in clinical trials, with a favorable safety profile. It 
was demonstrated as effective against Ebola 
virus, Mycobacterium TB, Plasmodium 
falciparum, and Candida albicans. Tetrandrine's 
pharmacological properties have been 
demonstrated by its effects on many signaling 
pathways, including, calcium channel, 
suppression of formation of reactive oxygen 
species, increased autophagy, reversal of 
multidrug resistance, and caspase pathway 
[179]. It was suggested to act against the 
coronavirus by antagonism of the two-pore 
channel 2 (TPC2) [180]. It also decreased human 
coronavirus strain OC43 (HCoV-OC43) infection 
of MRC-5 human lung cells in vitro, with an 
inhibitory concentration (IC50) of 0.33 μM/L           
[40]. It showed promising effects in the 
management of silicosis, and in one study it was 
given by inhalation to ameliorate lung fibrosis 
[181]. 
 
A published hypothesis, discussed in detail that 
TET can be considered a promising treatment for 
COVID- 19. The research reviewed the multiple 
properties of the drug, including its ability to 
inhibit replication of related coronavirus at very 
low concentrations. Then, the researcher also 
discussed its PK and the possibility of achieving 
an effective concentration in lung tissue. They 
also reviewed the expected side effects; drug 
interactions and precautions to be considered in 
certain situations [180]. 
 
3.2.17 Pristimerin (Pris) 
 
Pristimerin, a quinonoid triterpene, isolated from 
the Chinese herbal plant Tripterygium wilfordii 
(Celastraceae), and it has been claimed that 
pristimerin has anti-fungal, anti-oxidant, anti-
bacterial, and antiviral characteristics [182,183]. 
It is active against SARS- CoV with an IC50 = 5.5 
0.7 M According to several studies, pristimerin 
and its biological counterpart URB602 are 
monoglyceride lipase inhibitors, [184]. The 
formation of proteasomes was suppressed, NF-B 
activity and cyclin D1 expression were 
downregulated, and Bax, caspase, and cleavage 
of poly (ADP-ribose) polymerase PARP-1 were 
activated as part of pristimerin's anticancer 
activities [185]. Studies in animals showed that 
Pris has a half-life of about 2 hours and poor 
bioavailability of about 28 % after oral 
administration. It is primarily metabolized by 
phase I enzymes [186]. 
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Table 3. Bioavailability of specified phytochemicals  
 

Phytochemicals Oral route  Intravenously (IV)/  
Intraperitoneal Route (IP) 

Enhancer and notes 

Glycyrrhizin [ 209] Extremely low  Sodium caprate > sodium laurate >sodium caprylate> sodium oleate 
Nasal-80-fold greater compared with oral administration. Rectal 
administration, greater compared with oral 

Resveratrol [ 210, 211] Preferred route   Dose-dependent. Low water solubility which explains its slow 
absorption, 

Lycorine [88] Not available No significant difference between (IP, iv)-
The concentration in plasma was 
undetectable, which indicate its rapid 
clearance  

 

Emodin [109, 212] Poor intestinal absorption, fast 
elimination, and low bioavailability. 

 Gender-dependent 

Aescin [213] Film-coated tablet with sustained-
release allowed high bioavailability 

  

G-RB1 [ 113] The low oral bioavailability of RB1 and 
rapid reduction of Rg1 in blood 
indicated that pharmaceutical 
technology is necessary 

  

CELASTROL [175] Tablets with enhanced bioavailability 
was reported 

 Gender-dependent 
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3.2.18 Curcumin 
 
It is described as a drug with multitarget for 
multiple chronic diseases. It has broad 
pharmacological activity. Its potential role in the 
management of COVID -19 was suggested [187, 
188]. Curcumin is a bright yellow chemical 
produced by plants of the Curcuma longa 
(Zingiberaceae) that could potentially block 
ACE2 to prevent COVID-19 entrance into host 
cells [189]. It also has a potential inhibitory effect 
on COVID‐19 Mpro [190]. An in vitro study 
showed that treatment with cationic carbon dots 
based on curcumin can suppress coronavirus 
replication by stimulating the production of 

interferon‐stimulating genes (ISGs) and 
cytokines (IL8 and IL6) of Vero cells by triggering 
the innate immunity of the host [191]. Curcumin 
has been shown to lower influenza A virus 
infection and its associated pneumonia. It 
suppresses virus-induced activation of several 
inflammatory pathways (TLR2/4, MAPK, and 
NFB). Given these findings, it was suggested 
that curcumin has a potential role in the 
treatment of COVID-19 induced lung 
complications [192]. Curcumin has 

anti‐inflammatory and anti‐fibrotic effects by 
several mechanisms [193]. Furthermore, in 
experimental models of lung fibrosis, curcumin 
has been demonstrated to decrease collagen 
formation [194]. A study showed that prophylactic 
application of curcumin decreased the 
inflammation and reduces the influx of fluid in the 
lungs of a rat model of induced hypoxia [195]. 
 
Curcumin has poor bioavailability and as such, it 
is not likely to show good tissue distribution. 
[196]. Some clinical trials suggested its good 
safety profile after oral administration [197]. 
However, it is considered unsafe for pregnant 
women. It can cause GIT side effects, and there 
are some reports of liver injury [198, 199]. 
 
3.2.19 Betulinic acid (BTA) 
 
BTA is lupine-type pentacyclic triterpenoid 
saponin (3β-hydroxy-lup-20). It is found in the 
bark of several natural plants, primarily Betula 
pendula (Betulaceae). Its anti-inflammatory, anti-
angiogenic, and immunomodulatory properties, 
as well as its anti-human immunodeficiency virus 
effects, have been demonstrated. The majority of 
studies focused on its anticancer effects and 
postulated the underlying mechanisms [200, 
201]. BTA was discovered to be a strong inhibitor 
of (SARS-CoV) in vitro [202]. Molecular 
modelling analysis indicated that BTA interacts 

with coronavirus (SARS-CoV) 3CL protease 
[203]. Several studies suggested BTA ability to 
attribute experimentally induced lung injury by 
several mechanisms [204, 205]. BTA has very 
low water solubility that explains its low 
bioavailability. Some derivatives were suggested 
to improve its bioavailability while retaining its 
antitumor activity [206]. Other studies utilized 
pharmaceutical techniques such as liposomes, 
nanosuspension, nanoencapsulation analogue 
[5, 207] to improve its bioavailability. In animal 
experiments, a good safety profile was 
documented [208]. 

 
4. CONCLUSION 
 

1) Many phytochemicals have been 
suggested to have potent anti-SARS-CoV-
2 activity based on in vitro testing 
However, preclinical research is sparse, 
and only a few compounds were tested in 
clinical trials against COVID-19. 

2) Extensive research is needed to provide a 
full pharmacological profile of 
phytochemicals that showed promising 
efficacy against SARS-CoV-2. 

3) The pharmacokinetics (PK) features of 
phytochemicals could be improved with 
pharmaceutical technologies. Table 3 
summarizes the bioavailability of several 
substances as well as techniques to 
improve them. 

4) Decision-makers, researchers, and 
pharmaceutical companies will benefit from 
this study. 
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