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Abstract 
Our group has earlier demonstrated that three enzymes sensitive to peptidase 
inhibitors (PIs), amastatin (A)-, captopril (C)-, and phosphoramidon (P), 
played an important role in inactivation of enkephalins at the spinal level. 
Dynorphin-converting enzyme (DCE) hydrolyzes dynorphin (Dyn) A (1-17) 
or Dyn A (1-13) mainly at the Arg6-Arg7 bond. Dynorphin A and its derived 
peptides interact with opioid and glutamate receptors at their N- and C-ter- 
minals, respectively. The purpose of the present study was to evaluate the an-
tinociceptive potency and toxicity of intrathecal administered Dyn A (1-17), 
Dyn A (1-13), or Dyn A (1-6) under pretreatment with ACP and/or the DCE 
inhibitor p-hydroxymercuribenzoate (PHMB). The effect of these PIs on Dyn 
A (1-17)-induced inhibition of electrically-evoked contractions in mouse vas 
deferens was also investigated. The inhibitory potency of Dyn A (1-17) on 
electrically-evoked contractions in mouse vas deferens under pretreatment 
with ACP was higher than that with AC, AP, or CP. Pretreatment with ACP 
augmented Dyn A (1-17) or (1-13)-induced antinociception by approximately 
50- or 30-fold with no sign of allodynia when administered intrathecally at 
low doses. Pretreatment with ACP and PHMB induced neuropathy. These 
findings showed that intrathecal administration of low-dose Dyn A (1-17) or 
DynA (1-13) increased antinociception under pretreatment with ACP, but 
without signs of allodynia in rat. 
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1. Introduction 

Dynorphin (Dyn) A (1-17) and (1-13) interacts with both opioid and N-methyl- 
D-aspartate (NMDA) receptors: their N-terminals activate the former with high 
affinity, while its C-terminals activate the latter with low affinity [1] [2] [3] [4]. 
In fact, intrathecal (i.t.) low dose (0.5 - 2 nmol) administration of Dyn A in-
duced an antinociceptive effect [5] [6], whereas that at a high dose induced long- 
lasting mechanical allodynia and motor dysfunction [7] [8] [9] [10]. 

Three peptidases, an aminopeptidase N (APN), a dipeptidylcarboxypeptidase, 
and neutral endopeptidase-24.11 (NEP), play an important role in degradation of 
opioid peptides. High-performance liquid chromatography revealed that [Leu5]- 
enkephalin (LE) [11] or Dyn A (1-8) [12] remained intact in the presence of a 
mixture of peptidase inhibitors (PIs) when incubated with membrane prepara-
tion, but was completely hydrolyzed after incubation in their absence. 

Preparations isolated in vitro allow a drug to be quantified and its efficacy, 
potency, and affinity compared more accurately than can be done with in vivo 
methods [13]. Earlier research on the inhibitory potency of LE or Dyn A (1-8) 
against electrically-evoked contractions in mouse vas deferens (MVD) demon-
strated that it was enhanced by exposure to various combinations of amastatin 
(A), captopril (C), and phosphoramidon (P) [14] [15]. These results correspond 
with the results of the previous in vivo studies showing that intracerebroventri-
cular (i.c.v.) administration of ACP increased LE-, Dyn A (1-8)-, and Dyn A 
(1-17)-induced antinociception by more than 500- [14], 100- [16], and 30-fold 
[17], respectively. 

Dynorphin-converting enzyme (DCE) hydrolyzes Dyn A mainly at the Arg6- 
Arg7 bond, resulting in the production of N- and C-terminal region peptide 
fragments, and this enzyme is not inhibited by ACP [18]. Matrix-Assisted Laser 
Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) 
identified N-terminal peptide fragment Dyn A (1-6) from Dyn A (1-17), but not 
the corresponding C-terminal peptide fragment, Dyn A (7-17), after incubation 
of Dyn A (1-17) with membrane fraction from rat midbrain or caudate putamen 
under pretreatment with ACP [17] [19]. These results suggest that C-terminal 
peptide fragments such as DynA (7-17) are catabolized, generating shorter, ex-
tremely weak, non-toxic products, particularly under pretreatment with ACP [17]. 

The purpose of the present study was to evaluate antinociceptive potency and 
toxicity with i.t. administration of Dyn A (1-17), Dyn A (1-13), or Dyn A (1-6) 
under pretreatment with ACP and/or DCE inhibitor p-hydroxymercuribenzoate 
(PHMB) in rat spinal cord under physiological conditions. In an attempt to fur-
ther characterize the pharmacological action of PIs, the effect of ACP on Dyn A 
(1-17)-induced inhibition of electrically-evoked contractions in MVD was also 
evaluated. 

2. Materials and Methods 

The present animal experiments were performed in strict accordance with the 
guidelines (http://www.u-tokai.ac.jp/about/concept/guidance.html) of Tokai Uni-

http://www.u-tokai.ac.jp/about/concept/guidance.html
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versity and with the approval of the Animal Investigation Committee of this in-
stitute. 

2.1. Chemicals 

Dynorphin A (1-17), Dyn A (1-13), A, and P were purchased from Peptide In-
stitute Inc. (Minoh, Japan). Dyn A (1-6) was purchased from Phoenix Pharma-
ceuticals, Inc. (Mannheim, Germany). Captopril, D-Phe-Cys-Tyr-D-Trp-Orn- 
Thr-Pen-Thr-NH2 (CTOP, a μ-opioid receptor antagonist), nor-binaltorphi- 
minedihydrochloride (nor-BNI, a κ-opioid receptor antagonist), and naltrindole 
hydrochloride (NTI, a δ-opioid receptor antagonist) were purchased from SIGMA 
Japan (Tokyo, Japan). Naloxone hydrochloride (NOX, a non-selective opioid 
receptor antagonist) was purchased from Daiichi-Sankyo Company, Limited 
(Tokyo, Japan). P-hydroxymercuribenzoate was purchased from Merck Japan 
(Tokyo, Japan). All chemicals apart from nor-BNI, NTI, and PHMB were dis-
solved in saline. Nor–BNI and NTI were dissolved in water. The PHMB was 
dissolved in saline with 0.1 N-NaOH up to a pH of 9.0. The solution for all drugs 
used was prepared to the desired concentration just before use. In accordance 
with the method of earlier studies, CTOP (3 nmol, i.t.), nor-BNI (20 mg/kg, 
subcutaneously), and NTI (66 nmol, i.t.) were injected 15 min, 30 min, and 24 h, 
respectively, before i.t. administration of the PIs [20] [21] [22] [23]. 

2.2. In Vitro Isolated Preparations 

Male ICR JCL mice (30 - 40 g each; Nihon Clea, Tokyo, Japan) were used. 
Mouse vas deferens was harvested and prepared for electrical stimulation as de-
scribed previously [24]. The percent (%) inhibition of stimulated muscle twitch 
produced by each opioid was plotted against its log concentration to determine 
the IC50 (concentration required to produce 50% inhibition of the twitch). When 
investigating the effect of PIs on Dyn A (1-17)-induced inhibition of contrac-
tions, a period of 3 min was given before administration of Dyn A (1-17). The % 
difference shown in the tables was calculated as follows: % difference = [(IC50 
before each treatment − IC50 after each treatment)/IC50 before each treatment] × 
100 [24]. 

2.3. Intrathecal Administration 

Intrathecal catheters were implanted in Male Wistar rats (180 - 220 g each; Ni-
hon Clea, Tokyo, Japan) under inhalation anesthesia with nitrous oxide, oxygen, 
and isoflurane (2%) as described previously [17] [25]. After surgery, all rats were 
housed individually in a temperature- and light-controlled environment with 
free access to food and water. Only rats with normal motor function and beha-
vior were used for the experiments 7 days later. Drugs were injected at a volume 
of 10 μl followed by 10 μl saline over 1 min. 

2.4. Tail-Flick Test 

The investigators were blind to all drug treatments carried out in these experi-
ments. Induction of antinociception by Dyn A (1-17), Dyn A (1-13), or Dyn A 
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(1-6) was measured by the tail immersion assay, with 55˚C as the nociceptive 
stimulus [26] [27]. The latency to flick the tail was measured as described pre-
viously [17]. A cut-off time of 5 sec was used to prevent any injury to the tail. 
The % of maximal possible effect (MPE) for each animal at each time was calcu-
lated using the following formula: %MPE = [(test latency − baseline latency)/(5 − 
baseline latency)] × 100. The area under the curve (AUC) value for the antinoci-
ceptive action of each drug was also calculated in some of the experiments. 

2.5. Von Frey Test 

The threshold for tactile allodynia was measured with a series of von Frey fila-
ments (von Frey Filaments; Bioseb, Vitrolles, France), ranging from 2.44 to 5.88 
(0.03 - 60.0 g), according to the methods of Park et al. [28] and Zhu et al. [29]. 
The rats were placed in individual transparent plastic boxes with a wire mesh 
floor at least 15 min before testing began to allow acclimatization to the envi-
ronment. The filaments were pushed against the plantar surface of the right hind 
paw. Tactile thresholds were measured at intervals before and after administra-
tion of drugs. Results were reported as the mean value of 4 readings from the 
right hind paw in each rat. 

2.6. Animal Experimental Protocol 
2.6.1. Dyn A-Dependent Antinociception with or without ACP by Dose 
Ten minutes following i.t. administration of ACP or saline, Dyn A (1-17), Dyn A 
(1-13), Dyn A (1-6), or saline was administered by the same route. To determine 
whether the antinociceptive effect increased with i.t. administration of ACP (10 
nmol each), the rats were tested in the following groups: Group 1, Dyn A (1-17) 
(0.03 - 1 nmol) alone or with ACP; Group 2, Dyn A (1-13) (0.1 - 3 nmol) alone 
or with ACP; and Group 3, Dyn A (1-6) (0.3 - 3 nmol) alone or with ACP. 

2.6.2. Combination of Dyn A (1-17) and PHMB Together with ACP 
Ten minutes following i.t. administration of PHMB and ACP, Dyn A (1-17) (0.3 
nmol) was administered intrathecally. To determine whether the antinociceptive 
effect of Dyn A (1-17) was increased by joint administration of PHMB and ACP, 
the rats were tested in the following groups: Group 1, Dyn A (1-17) alone; Group 
2, Dyn A (1-17) with ACP; Group 3, Dyn A (1-17) with PHMB; and Group 4, 
Dyn A (1-17) in combination PHMB and ACP. 

2.6.3. Selective or Non-Selective Opioid Receptor Antagonists 
To investigate the effect of opioid receptor antagonists on Dyn A (1-17) (0.3 
nmol) or DynA (1-13) (0.3 nmol)-induced antinociception under pretreatment 
with ACP, NOX (1 mg/kg, subcutaneously), CTOP (3 nmol, i.t.) [22], NTI (66 
nmol, i.t.) [21], and nor-BNI (20 mg/kg, subcutaneously) [23] were injected at 
20 min, 15 min, 30 min, and 24 hr, respectively, before i.t. administration of Dyn 
A (1-17) or Dyn A (1-13). 

2.7. Statistical Analyses 

The results are given as the mean and standard error of the mean (S.E.M.) of the 
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data. The statistical analysis was conducted using computer software (Prism, 
version 6.0 c, Graph Pad Software, San Diego, CA, USA) for a comparison across 
experimental conditions. When a significant difference among the %MPE data 
after drug administration was obtained in a two-way (drugs and time) repeated 
measures analysis of variance (ANOVA), Dunn’s multiple comparison test was 
applied to determine the significance at each time point. When a significant dif-
ference was observed in the AUC data among the groups in a two-way (drugs 
and dose) repeated ANOVA, Dunn’s multiple comparison test was applied to 
determine the significance at each dose. When a significant difference within 
groups was obtained in the Kruskal-Wallis test, Dunn’s comparison test was ap-
plied to determine significance. 

3. Results 
3.1. Enhanced Effect of PIs in Paired Combinations or all Together  

on Dyn A (1-17)-Induced Inhibition in Isolated Preparation 

The results showed that Dyn A (1-17) significantly inhibited electrically-evoked 
contractions in MVD. The inhibitory potency of Dyn A (1-17) was dose-de- 
pendently augmented by ACP (Table 1). Administration of paired combinations 
(2 µM each of AP, AC, or CP) or all three PIs together (2 µM ACP) revealed that 
any two combination or ACP increased Dyn A (1-17)-induced inhibition of 
electrically-evoked contractions in MVD. This effect was significantly stronger 
with ACP than with CP; it was also stronger than with administration of AP or 
AC, but not significantly so (Table 2). 
 
Table 1. IC50 values and ratio of potency of Dyn A (1-17) under pretreatment of ACP. 

ACP (µM each) IC50 (nM) Ratio of potency 

0 11.37 ± 3.97  

1 4.53 ± 2.11 2.77 ± 1.54 

2 3.18 ± 0.97 3.51 ± 1.27* 

5 3.15 ± 1.42 3.81 ± 1.74* 

Each value represents mean ± S.E.M. of data obtained from four MVD. The ratio of potency was signifi-
cantly increased in 2 or 5 µM ACP as compared to these in 0 µM ACP; *P < 0.05 by Dunn’s post-hoc test 
following Kruskal-Wallis test. 

 
Table 2. IC50 values and ratio of potency of Dyn A (1-17) under pretreatment of combi-
nation of PIs. 

PIs (2 µM each) IC50 (nM) Ratio of potency 

None 11.37 ± 3.97  

ACP 3.18 ± 0.97 3.51 ± 1.27 

AP 3.90 ± 1.53 2.88 ± 0.86 

AC 4.64 ± 1.14 2.30 ± 0.53 

CP 6.10 ± 1.85 1.80 ± 0.52* 

Each value represents mean ± S.E.M. of data obtained from four MVD. The ratio of potency was signifi-
cantly deceased in CP as compared to ACP; *P < 0.05 by Dunn’s post-hoc test following Kruskal-Wallis test. 
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3.2. Effect of ACP on Dyn A (1-17)- or Dyn A (1-13)-Induced  
Antinociception 

Change over time in Dyn A (1-17)-induced antinociception with i.t. administra-
tion of saline and ACP is shown in Figure 1(a) and Figure 1(b), respectively.  
 

 
Figure 1. Dose-dependent antinociception by i.t. administration of Dyn A (1-17) under 
pretreatment with saline or ACP. Upper (a) and middle panels (b) indicate time course 
of %MPE of Dyn A (1-17) (0.03 - 1 nmol) under pretreatment with saline and ACP, re-
spectively. Significantly different from saline-saline or ACP-saline treated control by 
Dunn’s post-hoc test following two-way repeated measures ANOVA; *P < 0.05, **P < 
0.01, and ***P < 0.001. Lower panel (c) shows AUC0-120min for value of %MPE indicated in 
upper (a) and middle panels (b). Where asterisks have been placed above AUC0-120min val-
ues for Dyn A (1-17) under pretreatment with ACP, this indicates significant differences 
in comparison with for saline alone or saline under pretreatment with ACP according to 
Dunn’s post-hoc test following the Kruskal-Wallis test; *P < 0.05, **P < 0.01, and ***P < 
0.001. Where sharp symbols have been placed above AUC0-120min values for Dyn A (1-17) 
under pretreatment with ACP, this indicates significant differences in comparison with 
those for Dyn A (1-17) under pretreatment with saline according to Dunn’s post-hoc test 
following two-way repeated measures ANOVA; ##P < 0.01 and ###P < 0.001. 
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Change over time in Dyn A (1-13)-induced antinociception after i.t. administra-
tion of saline and ACP is shown in Figure 2(a) and Figure 2(b), respectively. A 
prolonged and dose-dependent antinociceptive effect was observed on the 
tail-flick response by administration of Dyn A (1-17) and Dyn A (1-13). 
 

 
Figure 2. Dose-dependent antinociception by i.t. administration of Dyn A (1-13) under 
pretreatment with saline or ACP. Upper (a) and middle panels (b) indicate time course 
of %MPE of Dyn A (1-13) (0.1 - 3 nmol) under pretreatment with saline and ACP, re-
spectively. Significantly different from saline-saline treated control in Dunn’s post-hoc 
test following two-way repeated measures ANOVA; *P < 0.05, **P < 0.01, and ***P < 
0.001. Lower panel (c) shows AUC0-120min for value of %MPE indicated in upper (a) and 
middle panels (b). Where asterisks have been placed above AUC0-120min values for Dyn A 
(1-13) under pretreatment with ACP, this indicates significant differences in comparison 
with for saline alone or saline under pretreatment with ACP according to Dunn’s 
post-hoc test following the Kruskal-Wallis test; *P < 0.05 and **P < 0.01. Where sharp 
symbols have been placed above AUC0-120min values for Dyn A (1-13) under pretreatment 
with ACP, this indicates significant differences in comparison with those for Dyn A 
(1-13) under pretreatment with saline according to Dunn’s post-hoc test following 
two-way repeated measures ANOVA; ##P < 0.01 and ###P < 0.001. 
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The onset, offset, and duration of the antinociceptive effect induced by i.t. 
administration of 0.1 nmol Dyn A (1-17) under pretreatment with ACP was the 
same as that with 5 nmol Dyn A (1-17) alone (Figure 3(a)). Administration of 
0.1 nmol Dyn A (1-17) under pretreatment with ACP yielded an AUC0-120min 
value for %MPE similar to that with 5 nmol Dyn A (1-17) alone (Figure 3(b)). 
The onset, offset, and duration of the antinociceptive effect induced by i.t. ad-
ministration of 0.3 nmol Dyn A (1-13) under pretreatment with ACP was simi-
lar to that with 10 nmol Dyn A (1-13) alone (Figure 3(c)). Administration of 0.3 
nmol Dyn A (1-13) under pretreatment with ACP yielded an AUC0-120min value 
for %MPE similar to that with 10 nmol Dyn A (1-13) alone (Figure 3(d)). 

Intrathecal administration of Dyn A (1-17) under pretreatment with ACP in-
duced a 50-fold increase in the antinociceptive effect on the tail-flick response, 
while that of Dyn A (1-13) increased it 30-fold. 

3.3. Effect of ACP on Dyn A (1-6)-Induced Antinociception 

Figure 4(a) shows change over time in Dyn A (1-6)-induced antinociception 
after i.t. administration of saline, while Figure 4(b) shows that with ACP. A  
 

 
Figure 3. Potentiating effect of ACP on antinociception induced by i.t. administration of Dyn A (1-17) or Dyn A (1-13). 
Upper panel (a) indicates time course of %MPE of Dyn A (1-17) (0.1 nmol) under pretreatment with ACP (10 nmol each) 
and Dyn A (1-17) (3 or 5 nmol) under pretreatment with saline. Upper panel (c) indicates time course of % MPE of Dyn 
A (1-13) (0.3 nmol) under pretreatment with ACP (10 nmol each) and Dyn A (1-13) (3 or 10 nmol) under pretreatment 
with saline. Significantly different from saline-saline treated control according to Dunn’s post-hoc test following two-way 
repeated measures ANOVA; *P < 0.05, **P < 0.01, and ***P < 0.001. Lower panel (b) and (d) shows AUC0-120min for value 
of % MPE indicated in upper panel (a) and (c), respectively. 
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Figure 4. Dose-dependent antinociception by i.t. administration of Dyn A (1-6) under 
pretreatment with saline or ACP. Upper (a) and middle panels (b) indicate time course 
of %MPE of Dyn A (1-6) (0.3 - 3 nmol) under pretreatment with saline and ACP, respec-
tively. Significantly different from saline-saline treated control in Dunn’s post-hoc test 
following two-way repeated measures ANOVA; *P < 0.05, **P < 0.01, and ***P < 0.001. 
Lower panel (c) shows AUC0-60min for value of %MPE indicated in upper (a) and middle 
panels (b). Where asterisks have been place above AUC0-60min values for Dyn A (1-6) un-
der pretreatment with ACP, this indicates significant differences in comparison with sa-
line under pretreatment with ACP according to Dunn’s post-hoc test following the 
Kruskal-Wallis test; **P < 0.01. Where sharp symbols have been place above AUC0-60min 
values for Dyn A (1-6) under pretreatment with ACP, this indicates significant differenc-
es in comparison with that for Dyn A (1-6) under pretreatment with saline according to 
Dunn’s post-hoc test after two-way repeated measures ANOVA; ###P < 0.001. 
 
prolonged and dose-dependent antinociceptive effect was observed on the tail- 
flick response with administration of Dyn A (1-6). The AUC0-60min value demon-
strated significantly greater induction of antinociception with 3 nmol Dyn A 
(1-6) under pretreatment with ACP than with ACP alone (Figure 4(c)). 
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3.4. Effect of Antagonists on Dyn A (1-17)- or Dyn A  
(1-13)-Induced Antinociception under Pretreatment  
with ACP 

The antinociceptive potency of Dyn A (1-17) or Dyn A (1-13) under pretreat-
ment with ACP was significantly attenuated by NOX, CTOP, or nor-BNI; it was 
also was attenuated by NTI, but not significantly so (Figure 5 and Figure 6). 

3.5. Effect of PHMB on Dyn A (1-17)-Induced Antinociception 

The antinociceptive potency of 0.3 nmol Dyn A (1-17) under pretreatment with 
ACP was significantly higher than that of 0.3 nmol Dyn A (1-17) alone or with 
PHMB (10 nmol) (Figure 7). The antinociceptive potency of 0.3 nmol Dyn A 
(1-17) under pretreatment with PHMB and ACP was approximately equal to 
that of 0.3 nmol Dyn A (1-17) under pretreatment with ACP alone (Figure 7). 
Ten minutes following i.t. administration of PHMB and ACP, 0.3 nmol Dyn A 
(1-17) was administered in 6 rats. Two of the rats showed no abnormal signs as a 
result. Meanwhile, subtle and transient paralysis occurred in two more, and 
these animals showed the lowest AUC0-120min values in the tail flick test. The results  
 

 
Figure 5. Effect of non-selective opioid receptor antagonist NOX on antinociceptive potency of Dyn A (1-17) or Dyn A (1-13) 
under pretreatment with ACP. Upper panels (a) and (c) indicate time course of %MPE of Dyn A (1-17) (0.3 nmol) and DynA 
(1-13) (0.3 nmol)-induced antinociception under pretreatment with ACP following administration of NOX (0.2 mg/kg), respec-
tively. Significantly different from NOX-administrated group according to Dunn’s post-hoc test following two-way repeated 
measures ANOVA; *P < 0.05, **P < 0.01, and ***P < 0.001. Lower panels (b) and (d) show AUC0-60min for value of %MPE indicated 
in upper panels (a) and (c), respectively. Significantly different from NOX-administrated group according to Dunn’s post-hoc test 
following Kruskal-Wallis test; **P < 0.01 and ***P < 0.001. 
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Figure 6. Effect of opioid receptor selective antagonists on antinociceptive potency of Dyn A (1-17) or Dyn A (1-13) un-
der pretreatment with ACP. Upper panels (a) and (c) indicate time course of %MPE of Dyn A (1-17) (0.3 nmol) and Dy-
nA (1-13) (0.3 nmol)-induced antinociception under pretreatment with ACP following administration of three opioid re-
ceptor antagonists CTOP (3 nmol), nor-BNI (20 mg/kg), or NTI (66 nmol), respectively. Significantly different from Dyn 
A (1-17) or Dyn A (1-13) under pretreatment with ACP according to Dunn’s post-hoc test following two-way repeated 
measures ANOVA; *P < 0.05, **P < 0.01, and ***P < 0.001. Lower panels (b) and (d) show AUC0-60min and AUC0-120min for 
value of %MPE indicated in upper panels (a) and (c), respectively. Significantly different from Dyn A (1-17) under pre-
treatment with ACP according to Dunn’s post-hoc test following Kruskal-Wallis test; *P < 0.05 and ***P < 0.001. 

 
of the tail flick and von Frey tests in all of four of these animals are reported 
here. The two remaining rats, however, showed prolonged and severe paralysis, 
making both the tail flick and von Frey test unviable. Thus, 4 out of 6 rats 
showed some signs of neuropathy following i.t. administration of 0.3 nmol Dyn 
A (1-17) under pretreatment with both PHMB and ACP. 

3.6. ACP Attenuates Allodynia Induced by i.t. Administration of  
Dyn A (1-17) 

No significant differences were observed in the baseline threshold stimulus be-
tween each group before administration of Dyn A (1-17) (3 or 5 nmol) alone or 
Dyn A (1-17) (0.1, 0.3 nmol) with ACP and/or PHMB (10 nmol). The threshold 
stimulus intensity required to evoke withdrawal was in the order of 4.93 to 5.88 
(8.0 - 60.0 g) in normal rat (Figure 8). Intrathecal administration of Dyn A 
(1-17) (3, 5 nmol) produced significant mechanical allodynia, with tactile thre-
sholds falling from approximately 3.61 to 4.08 (0.4 - 1.0 g) (Figure 8(a)). In 
contrast, no allodynia was observed with Dyn A (1-17) (0.1, 0.3 nmol) with ACP 
or PHMB (Figure 8). 
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Figure 7. Antinociception by i.t. administration of Dyn A (1-17) under pretreatment with 
saline or ACP together with/without PHMB. Upper panel (a) indicates time course 
of %MPE of Dyn A (1-17) (0.3 nmol) under pretreatment with saline and ACP with and 
without PHMB, respectively. Significantly different from saline-ACP treated control in 
Dunn’s post-hoc test following two-way repeated measures ANOVA; *P < 0.05, **P < 
0.01, and ***P < 0.001. Lower panel (b) shows AUC0-120min for value of %MPE indicated in 
upper panel (a). Significantly different from saline-ACP treated control according to 
Dunn’s post-hoc test following Kruskal-Wallis test; *P < 0.05 and **P < 0.01. 

4. Discussion 

The present results revealed that the antinociceptive potency of Dyn A (1-17), 
Dyn A (1-13), or Dyn A (1-6) depended on the dose and length of the peptide 
when administered i.t. in the absence of, or under pretreatment with, ACP. This 
is in good agreement with the results of earlier studies showing that Dyn A 
(1-17)-induced antinociception at the supraspinal level was greater than that of 
Dyn A (1-6) or Dyn A (1-13) at the same dose [17], and that Dyn A (1-17) had a 
greater analgesic effect than Dyn A (1-13) in the absence of ACP [30]. Pretreat-
ment with ACP increased antinociception with low-dose Dyn A (1-17), with 
neither hyperalgesia nor paralysis. The present findings then provide further 
support for the view that C-terminal peptide fragments of Dyn A (1-17), such as 
Dyn A (7-17), are catabolized into shorter products that are extremely weak tox-
icity under pretreatment with ACP [17], thus reducing neuropathic symptoms. 

Intrathecal administration of Dyn A (1-17) and LE [31] under pretreatment 
with ACP augmented antinociception by at least 50- and 100-fold, respectively.  
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Figure 8. Duration of tactile threshold stimulus intensity required to evoke withdrawal 
with Dyn A (1-17) (0.3, 3 or 5 nmol) alone or Dyn A (1-17) (0.1, 0.3 nmol) with ACP 
and/or PHMB administration. Upper and lower panels (a) and (b) indicate tactile thre-
sholds measured at intervals by von Frey filaments. Significantly different from Dyn A 
(1-17) under pretreatment with ACP and/or PHMB according to Dunn’s post-hoc test 
following two-way repeated measures ANOVA; *P < 0.05, **P < 0.01 and ***P < 0.001. 
 
These findings coincide well with the results of earlier histological studies show-
ing that the distribution of NEP and APN was highly concentrated in the subs-
tantia gelatinosa of the spinal cord, a region closely associated with µ-opioid re-
ceptors and enkephalins [32] [33] [34] [35]. Taken together, this suggests that 
this co-localization of peptidases and opioid peptides plays a critical role in no-
ciception through the latter’s inactivation in the spinal cord. 

Pretreatment of paired combinations (2 µM each of AP, AC, or CP) or all 
three PIs together (2 µM ACP) revealed that AP or ACP significantly increased 
Dyn A (1-17)-induced inhibition of electrically-evoked contractions in MVD. 
This effect was significantly stronger with ACP than with AC or CP; it was also 
stronger than with administration of AP, but not significantly so. These results 
demonstrate that ACP is required to inhibit degradation of intact Dyn A (1-17), 
and that any residual pair of peptidases inactivates substantial amounts of Dyn A 
(1-17). This is in good agreement with the results of an earlier study by this 
group demonstrating that the antinociceptive potency of Dyn A (1-17) was 
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higher under pretreatment with ACP than with any paired combination of these 
PIs at the supraspinal level [17]. 

Both the present and earlier studies demonstrated that LE (IC50: 1.74 nM) [36] 
showed greater potency than Dyn A (1-17) (IC50: 4.53 nM) under pretreatment 
with ACP in isolated MVD preparation. On the other hand, Dyn A (1-17) (ED50: 
0.272 nmol) showed greater potency than LE (ED50: 4.5 nmol) [31] under pre-
treatment with ACP in the tail flick test. This discrepancy might be explained by 
differences in the opioid receptor subtype mainly responsible for each effect be-
tween isolated MVD preparation and spinal cord. The inhibitory potency of the 
δ-opioid receptor agonist in isolated MVD preparation is greater than that of the 
others [37]. [Leu5]-enkephalin [38] and Dyn A [1] [39] mainly bind to δ- and 
κ-opioid receptors, respectively, so the inhibitory potency of LE in isolated MVD 
preparation is greater than that of Dyn A (1-17). In contrast, the present and 
earlier [31] studies using opioid receptor selective antagonists showed that i.t. 
administration of LE or Dyn A (1-17) under pretreatment with ACP induced 
antinociception by μ-opioid receptors, in particular. These results correspond 
well with those showing that regional distribution of NEP and APN overlaps 
that of μ-opioid, but not δ-opioid receptors [32] [34], and that the N-terminal 
region of Dyn A (1-17) interacts with both μ-opioid and δ-opioid receptors [40] 
[41] [42]. 

One study demonstrated that DCE was an important enzyme in Dyn 
A-induced antinociception and toxicity at the spinal cord level [6]. This indi-
cates that pretreatment with PHMB and ACP would safeguard the integrity of 
i.t. administered Dyn A (1-17). Another study reported that toxicity ranked in 
the order of Dyn A (1-17) > Dyn A (1-13) > Dyn A (13-17), whereas LE caused 
no neuronal toxicity [2]. The present results showed that the antinociceptive po-
tency of 0.3 nmol Dyn A (1-17) under pretreatment with PHMB and ACP was 
not significantly higher than that with ACP alone. The 2 rats showing the lowest 
values for antinociceptive potency exhibited subtle lower limb paralysis follow-
ing administration of 0.3 nmol Dyn A (1-17) under pretreatment with PHMB 
and ACP, but recovered completely after 24 hr. Potency in these two animals 
was lower than the lowest observed with ACP in the absence of PHMB. This re-
duction in potency may have resulted from hyperalgesia, as suggested by an ear-
lier study reporting that i.t. administration of high-dose Dyn A (1-17) induced 
hyperalgesia [43]. 

Neuropathy was observed in a total of 4 out of 6 rats after i.t. administration 
of 0.3 nmol Dyn A (1-17) under pretreatment with PHMB and ACP. Both the 
tail flick and von Frey test could not be used to evaluate allodynia in 2 out of 4 
rats which developed neuropathy due to severe and long-lasting paralysis of the 
tails and lower limbs after administration of 0.3 nmol Dyn A (1-17) under pre-
treatment with PHMB and ACP. Meanwhile, subtle and transient paralysis oc-
curred in the two remaining rats, and these animals showed the lowest AUC0-120min 
values and stimulus intensity in the tail flick and von Frey test, respectively. Two 
other rats showed no abnormal signs. These may lead to no difference in Dyn A 
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(1-17)-induced antinociception and allodynia under pretreatment with ACP 
between with and without concomitant administration of PHMB. The character 
and frequency of symptoms of neuropathic pain may depend on the dose of Dyn 
A (1-17), which would correspond to the concentration of Dyn A (1-17) in the 
intrathecal space. Indeed, earlier studies have reported persistent allodynia with 
i.t. administration of high-dose (15 - 50 nmol) Dyn A [7] [10]. Further support 
for this hypothesis comes from evidence that high doses of Dyn A enhance 
intracellular levels of Ca2+ via simultaneous activation of NMDA and κ-opioid 
receptors, whereas low doses activate only κ-opioid receptors [7]. 

5. Conclusion 

In conclusion, the present results showed that inactivation of A-, C-, or P-sen- 
sitive enzymes leads to an increase in low-dose Dyn A (1-17)-induced antinoci-
ception without signs of allodynia at the spinal level. The antinociceptive poten-
cy and induction of allodynia by Dyn A (1-17), Dyn A (1-13), or their peptide 
fragments depended on their dose and length. The present findings suggest that 
PIs and other inhibitors of opioid peptide-degrading enzymes may have poten-
tial as novel therapeutic compounds for treatment of pain. 
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Abbreviations 

A: amastatin,  
ANOVA: analysis of variance,  
APN: aminopeptidase N,  
AUC: area under the curve,  
C: captopril,  
CTOP: D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2,  
DCE: dynorphiin-converting enzyme,  
Dyn: dynorphin,  
ED50: median effective dose,  
IC50: concentration required to produce 50% inhibition,  
i.c.v.: intracerebroventricular,  
i.t.: intrathecal,  
LE: [Leu5]-enkephalin,  
MPE: maximal possible effect,  
MVD: mouse vas deferens,  
NEP: neutral endopeptidase-24.11,  
NMDA: N-methyl-D-aspartate,  
nor-BNI: nor-binaltorphimine dihydrochloride,  
NOX: naloxone hydrochloride,  
NTI: naltrindole hydrochloride,  
P: phosphoramidon,  
PHMB: p-hydroxymercuribenzoate,  
PIs: peptidase inhibitors,  
S.E.M.: standard error of the mean. 
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