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Abstract

In this paper, we propose a new distribution called inverted beta generated slash distribution which is the
inverted form of the beta generated slash distribution. The beta generated slash distribution is first introduced
and then the inverted form of this distribution is established which is named as inverted beta generated slash
distribution. The explicit expressions for pdf, cdf, moments, skewness, kurtosis, median are derived and their
variation with different values of the parameters are studied. The hazard rate function assumes different
shapes depending on the values of the parameters. A few additional properties such as moment generating
function, Mills Ratio, Lorenz and Bonferroni curves, order statistics, hazard rate function of the proposed
distribution are also explored. The method of maximum likelihood is used to estimate the unknown parameters
of this distribution and a simulation study is conducted to check the performance of these estimates. The
MLE’s are found to be consistent and precise in estimating the true value of the parameters. Finally, the
proposed distribution is applied to a data set to check the flexibility of the model and the goodness-of-fit
of the proposed distribution is compared with three other competing distribution to show its flexibility and
advantage particularly in modeling heavy-tailed data sets.
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1 Introduction

The beta generated slash distribution proposed by Bhattacharjee and Borah(2024) is an extension of beta
distribution through the slash construction idea. Slash distribution is defined by Rogars and Tukey (1972) as
the ratio of standard normal variate to the uniform random variate which can be stochastically represented as:

Y =
X

U
1
q

where X is a standard normal variate and U∼Uniform(0,1). The shape parameter q > 0 controls the kurtosis
of the distribution. Since the last decade, various population distributions have been explored with the help
of slash construction idea. For example, the slashed versions for the epsilon half-normal by Gui et al.(2013),
the logistic distribution by Punathumparambath(2011) and the Birnbaum−Saunders distribution by Gomez et
al.(2009) etc. The modified version of the slash distribution has been proposed by Reyes et al.(2013). The beta
generated slash distribution (BGSl) is an extension of beta distribution through the slash construction idea.
We shall say that X follows the BGSl distribution with parameters a, b and q or X ∼ BGSl(a,b,q) if it can be
stochastically expressed as

X =
Z

U
1
q

where Z ∼ beta(a,b) and U∼Uniform(0,1) and are distributed independently of each other. Transforming a
known probability distribution into a new one is a cornerstone of statistical modeling andanalysis. Among the
various transformation techniques, the inverse transformation method, based on the standard inverse or ratio
function, holds particular significance.

An inverted distribution, also known as a reversed distribution, is a distribution of the reciprocal of a random
variable. If the probability distribution of any random variable X is given, then the distribution of the reciprocal
Y = 1

X
can be easily obtained. If X is a continuous random variable with probability density function f(x) and

cumulative density function F(x), then the cumulative distribution function of the reciprocal G(y) is given by:

G (Y ) = P (Y ≤ y) = P

(
X ≥ 1

Y

)
= 1− P

(
X <

1

Y

)
= 1− F

(
1

Y

)
The probability density function of Y is obtained as the derivative of cumulative distribution function as shown
below:

g (y) =
1

y2
f

(
1

y

)
The inverted distributions are widely used in many fields such as medical research, econometrices, biological
sciences etc. It is also used in financial literature, environmental studies, survival and reliability theory. While
there is no single inventor of the concept of inverse distribution in statistics, it evolved from the cumulative work
of mathematicians and statisticians over centuries. In the 18th century, While there is no single ”inventor” of
the concept of inverse distributions, it evolved from the cumulative work of mathematicians and statisticians
over centuries. Its origin can be traced back to the foundational work in probability theory by Thomas
Bayes, whose development of Bayesian inference laid the groundwork for using inverse distributions like the
inverse gamma as priors. Vilfredo Pareto’s study of income distributions introduced the Pareto distribution
(Pareto(1964)), later extended the inverted forms to analyze wealth concentration. Similarly, advancements
in reliability engineering and survival analysis, building on Waloddi Weibull’s work on the Weibull distribution
(Weibull(1951)), formalized inverted distributions like the inverted Weibull and inverted exponential for modeling
decreasing failure rates. The 20th century saw the integration of these concepts into diverse fields, including
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Bayesian statistics and reliability analysis, highlighting the versatility of inverse distributions in modeling rare
events, system failures and parameter uncertainty. The statistical literature contains several extensions of
inverted distributions, for example, Inverse exponential distribution by Abouammoh and Alshingiti(2009) has
garnered attention as a viable alternative to the standard exponential distribution. Additionally, Inverse Lindley
distribution was introduced by Sharma et al.(2015) and demonstrated its applicability in analyzing stress-
strength reliability, highlighting its utility in reliability and risk analysis contexts. Abd AL-Fattah et al.(2017)
proposed Inverted Kumaraswamy distribution and analyzed its characteristics. Tahir et al.(2018) presented the
inverted Nadarajah-Haghighi distribution, while Hassan et al.(2022) examined the inverted exponentiated Lomax
distribution, contributing to the expanding research on inverse distributions and their applications. Recently
the statistical properties and estimation of inverted Top-Leonne distribution was proposed by Saeed et al.(2023).
The inverted unit-teisser distribution along with some Recent Advances in Statistical Modeling and Simulations
with Application was propsoed by Krishna et al.(2022). These developments underscore the growing interest in
inverse distributions for capturing complex real-world phenomena.

A comprehensive review of research on inverted distributions reveals their significant utility in modeling real-
world data, particularly when extreme values or reciprocal relationships are involved. In scenarios where heavy-
tailed behavior dominates, inverted distributions are essential for accurate modeling, as they effectively capture
the influence of extreme or rare events. Models exhibiting skewness offer an improved approach to analyzing
heavy-tailed data, and inverted distributions are a valuable class within this framework.

Inverted distributions excel in scenarios involving heavy-tailed lifetime data, which frequently arise in practical
applications and require a probabilistic model capable of describing such behavior. Moreover, these models
are well-suited to datasets with outliers, as they enhance kurtosis and adapt to the data’s variability. While
much of the existing research focuses on inverted versions of random variables with support over (0,∞) and
(-∞, ∞) limited attention has been given to inverted distributions for bounded random variables. This gap in
the literature motivates the development of inverted distributions specifically designed for finite bounds. Such
models hold particular relevance for lifetime data, where the values are naturally constrained within a specific
range. In this study, we aim to construct and analyze the properties of inverted distributions for finitely bounded
random variables, thereby expanding their applicability in modeling lifetime and other bounded datasets.

Traditional regression models, widely used across fields such as biology, sociology, economics, psychology,
epidemiology, and marketing, often assume error structures that align with the normal probability distribution.
However, this assumption may not always hold, especially when the data exhibit asymmetry or skewness. In
such cases, inverted distributions offer a more appropriate alternative by accommodating non-standard error
structures. These distributions also provide the flexibility required to model extreme events and account for
outliers, making them particularly suitable for robust statistical analysis.

The paper is organised as follows. Section 2 introduces the density function of the proposed distribution.
Expressions for pdf, cdf, various descriptive statistics are derived and and behaviour of the curve of the proposed
distribution for varying values of the parameters graphically are shown in section 3. The maximum likelihood
estimation of the parameters of the distribution are dealt with in section 4. In section 5, some stochastic
simulations are performed to illustrate the behaviour of the parameters of the proposed distribution. In section
6, the proposed model is applied to data set on failure times to exhibit the potential of the distribution in
modeling real-life data sets. The findings of the paper are finally summarized in section 7.

2 Definition and Derivation of the Inverted Beta Generated
Slash Distribution

In this section, the pdf and cdf of the proposed distribution have been derived. These results have been presented
under Theorem 1 as shown below:
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Theorem 2.1. If a random variable X∼ BGSl(a,b,q) then Y= 1
X

∼ IBGSl(a,b,q), whose probability density
fucntion is given by:

g(y; a, b, q) =


qyq−1

β(a,b)
β(a+ q, b), 0≤ y < 1

qyq−1

β(a,b)
β( 1

y
; a+ q, b), 1≤ y <∞

And the cumulative distribution function is given by:

G(y; a, b, q) =


β(a+q,b)yq

β(a,b)
, 0≤ y < 1

β( 1
y
,a+q,b)yq−β(a+q,b)−β( 1

y
,a,b)

β(a,b)
+ 1, 1≤ y <∞

Proof. Let X ∼ BGSl(a, b, q) which can be stochastically expressed as:

X =
Z

U
1
q

where Z ∼ beta(a,b). The pdf of Z is given by:

f(z; a, b) =
za−1(1− z)b−1

β(a, b)
, 0 ≤ z ≤ 1

Suppose

W = U =⇒ Z = XW
1
q

∴

fX(x,w) = fx,u(xw
1
q , w)|J |

=
1

β(a, b)
za−1(1− z)b−1w

1
q

=
1

β(a, b)
za−1w

a
q (1− xw

1
q )b−1

Hence, the marginal distribution function of X is given by:

f(x) =

{
f1(x), 0 ≤ x < 1

f2(x), 1 ≤ x <∞
(2.1)

where

f1(x) =
xa−1

β(a, b)

∫ 1

0

w
a
q (1− xw

1
q )b−1dw

=
q

β(a, b)xq+1
β(x; a+ q, b) (2.2)

β(x; a+ b, q) being the incomplete beta function.

f2(x) =
xa−1

β(a, b)

∫ 1
xq

0

w
a
q (1− xw

1
q )b−1dw

=
q

β(a, b)xq+1
β(a+ q, b) (2.3)
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and cdf of X is

F (X) =

{
F 1(X), 0 ≤ y < 1

F 2(X), 1 ≤ y <∞
(2.4)

Where

F1(X) = P (X ≤ x)

=

∫ x

0

q

β(a, b)xq+1
β(x; a+ q, b)dx

=
q

β(a, b)

∫ x

0

β(y; a+ q, b)x−(q+1)dx

=
β(x; a, b)

β(a, b)
− x−q β(x; a+ q, b)

β(a, b)
(2.5)

F2(X) = P (X ≤ x)

=

∫ 1

0

f1(x)dx+

∫ x

1

f2(x)dx

= 1− β(a+ q, b)

β(a, b)
+
β(a+ q, b)

β(a, b)
(1− x−q) (2.6)

Finally, the pdf of Y= 1
X

is obtained as

g(y) = I(0,1)(y)
1

y2
f

(
1

y

)
+ (1− I(0,1))(y)

1

y2
f

(
1

y

)
= I(0,1)(y)

1

y2

[
q

β(a, b)
(

1
y

)q+1 β(a+ q, b)

]

+ (1− I(0,1))(y)
1

y2

[
q

β(a, b)
(

1
y

)q+1 β

(
1

y
; a+ q, b

)]

= I(0,1)(y)

[
qyq−1

β(a, b)
β(a+ q, b)

]
+ (1− I(0,1))(y)

[
qyq−1

β(a, b)
β

(
1

y
; a+ q, b

)]
(2.7)

I(0,1)(y) =

{
1, if 0 ≤ y < 1

0, if 1 ≤ y <∞

Again the cdf of Y is obtained as :

G(y) =

{
G1(y), 0≤ y < 1

G2(y), 1≤ y <∞
(2.8)

Where

G1(y) = P (Y ≤ y)

=

∫ t

0

qyq−1

β(a, b)
β(a+ q, b)

=
β(a+ q, b)yq

β(a, b)
(2.9)
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G2(y) = P (Y ≤ y)

=

∫ 1

0

g1(y)dy +

∫ y

1

g2(y)dy

=
β( 1

y
, a+ q, b)yq − β(a+ q, b)− β( 1

y
, a, b)

β(a, b)
+ 1 (2.10)

2.1 Location - Scale form of IBGSl Distribution

Another form of IBGSl distribution is the location - scale form. By applying the well known location - scale
transformation, we get the location - scale transformed IBGSL variate as (refer to Genc et al., (2014) for details)

T = µ+ σY (2.11)

where Y ∼IBGSl(a,b,q), 0 < µ <∞ and σ > 0. µ and σ are the location and scale parameters respectively. The
location- scale form of IBGSl distribution has the following pdf:

f(t; a, b, q) =


q(t−µ)(q−1)

β(a,b)σq β(a+ q, b), µ < T < µ+ σ

q(t−µ)(q−1)

β(a,b)σq β
(

σ
t−µ

, a+ q, b
)
, µ+ σ ≤ T <∞

(2.12)

where a,b,q,µ,σ are the parameter vector. We denote it by T ∼ IBGSlLS(a, b, q, µ, σ).

The density plots of the pdf (2.7) for some seleted values of the parameters are given in Fig. 1. These plots
show the greater flexibility of the newly proposed distribution for different values of the parameters a, b and q.

Fig. 1. Probability density function plots of the IBGSl(a,b,q) distribution
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The cdf plot of IBGSl distribution for different values of the parameters are shown in the following figure.

Fig. 2. Cumulative distribution function plot of the IBGSl(a,b,q) distribution

3 Properties of IBGSl Distribution

In this section, various descriptive statistics such as moments, skewness, kurtosis, median, mode along with some
inequality measures and uncertainity measures of IBGSl distribution are derived.

3.1 Moments

If Y ∼ IBGSl(a, b, q), then the rth raw moment of Y is given by:

µ/
r = E(Y r) =

∫ ∞

0

yrf(y)dy

In particular,

µ
/
1 =

a+ b− 1

(a− 1)

q

(q + 1)
, a > 1

µ
/
2 =

(a+ b− 1)(a+ b− 2)

(a− 1)(a− 2)

q

(q + 2)
, a > 2

µ
/
3 =

(a+ b− 1)(a+ b− 2)(a+ b− 3)

(a− 1)(a− 2)(a− 3)

q

(q + 3)
, a > 3

µ
/
4 =

(a+ b− 1)(a+ b− 2)(a+ b− 3)(a+ b− 4)

(a− 1)(a− 2)(a− 3)(a− 4)

q

(q + 4)
, a > 4

The measures of skewness and kurtosis,denoted by γ1 and γ2, respectively are defined as

γ1 =
µ
/
3 − 3µ

/
2µ

/
1 + 2µ

/
1

3(
µ
/
2 − µ

/
1

2
) 3

2

γ2 =
µ
/
4 − 4µ

/
3µ

/
1 + 6µ

/
2µ

/
1

2
− 3µ

/
1

4(
µ
/
2 − µ

/
1

2
)2
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The skewness and kurtosis values for some selected values of a and b are displayed in Table 1.

Table 1. Skewness and Kurtosis values for different parameters

(a,b,q) skewness kurtosis

(4.5,0.3,1) 0.66 10.69
(4.5,0.6,1) 1.21 17.43
(4.5,0.8,1) 1.35 21.10
(5,0.8,1) 0.92 9.05
(5,0.8,5) 2.90 43.86
(5,0.8,10) 4.15 66.29

From Table 1, it is observed that both the skewness and kurtosis increases with an increase in q.

3.2 Median

The median (M) of any continous probability distribution is the point that splits the area under the probability
density curve into two equal parts. In the case of IBBGSl distribution, the area under the curve differ between
the intervals [0, 1) and [1,∞). Therefore the median of this distribution will fall within either of these two
ranges. The following algorithm are used for calculation of median:

1. Compute F(1)=
∫ 1

0
f1(y)dy.

2. If F(1) ≥0.5 then the median will lie in [0, 1) and M is obtained by solving the following equation:∫ M

0

f1(y)dy = 0.5

=⇒ β (a+ q, b)Mq

β(a, b)
= 0.5

3. If F(1) <0.5 then the median will lie in [1,∞)and M is obtained by solving the following equation:∫ 1

0

f1(y)dy +

∫ M

1

f2(y)dy = 0.5

=⇒
β
(

1
M
, a, b

)
− β

(
1
M
, a+ q, b

)
Mq

β(a, b)
= 0.5 (3.1)

The median values for different set of parameters are given in Table 2:

Table 2. Median values for diffrent set of parameters

Parameters Median

(0.5,0.3,1.5) 0.654
(1,2,2.5) 0.305
(2,0.3,0.5) 6.764
(0.5,0.3,0.5) 8.264
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3.3 Moment Generating Function

The moment generating function of IBGSL distribution is given by:

MY (t) = E
(
ety
)

=

∫ 1

0

etyf1(y)dy +

∫ ∞

1

etyf2(y)dy

= 1 +
q

β(a, b)

∞∑
k=1

tk

k!(k + q)
β(a− k, b) (3.2)

3.4 Additive Property of IBGSL distribution

Theorem 3.1. IBGSl distribution does not satisfy the additive property i.e., if X ∼ IBGSl(a1, b1,q1) and Y ∼
IBGSl(a2,b2,q2), then (X + Y ) does not follow the IBGSl distribution.

The m.g.f. of IBGSl(a,b,q) distribution is given by:

MY (t) = E
(
ety
)

=

∫ 1

0

etyf1(y)dy +

∫ ∞

1

etyf2(y)dy

= 1 +
q

β(a, b)

∞∑
k=1

tk

k!(k + q)
β(a− k, b)

Let Z = X+Y where X ∼ IBGSl(a1, b1,q1) and Y ∼ IBGSl(a2,b2,q2) and are independently distributed of each
other. Then the m.g.f. of Z is

MZ(t) =MX+Y (t)

=MX(t)MY (t)

=

(
1 +

q1
β(a1, b1)

∞∑
k=1

tk

k!(k + q1)
β(a1 − k, b1)

)
×(

1 +
q2

β(a2, b2)

∞∑
k=1

tk

k!(k + q2)
β(a2 − k, b2)

)
(3.3)

which is not the m.g.f. of IBGSl distribution.

Thus, X+Y does not follow IBGSl distribution or in other words, the IBGSl distribution does not satisfy the
additive property.

3.5 Mean Deviation about mean

The mean deviation about mean of a population measure the amount of scatter in a population to some extent.
For a random variable Y with pdf g(y), cdf G(Y), mean µ = E(Y), the mean deviation about mean are defined
by:
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δ1(y) =

∫ ∞

0

|y − µ|g(y)dy

=

∫ ∞

0

(µ− y)g(y)dy +

∫ ∞

µ

(y − µ)g(y)dy

= µG(µ)−
∫ ∞

0

yf(y)dy − µ [1−G(µ)] +

∫ ∞

µ

yg(y)dy

= 2µG(µ)− 2µ+ 2

∫ ∞

µ

yg(y)dy

= 2µG(µ)− 2

∫ µ

0

yg(y)dy (3.4)

Hence the mean deviation for IBGSl (a,b,q) are given by:

δ1(y) = I(0,1)(y)

[
2qβ(a+ q, b)µq

β(a, b)(1 + q)

{
β(a+ q, b)

β(a, b)
− µ

}]
+(1− I(0,1)(y)

[
2q

β(a, b)

{
β(a− 1, b)− β(a+ q, b)

(1− q)

}
β

(
1
µ
, a+ q, b

)
− β(a+ q, b) + β(a, b)− β

(
1
µ
, a, b

)
β(a, b)


− 2q

β(a, b)(q + 1)

{
β

(
1

µ
, a+ q, b

)
µq+1 − β(a+ q, b) + β(a− 1, b)

}]
(3.5)

3.6 Mills Ratio

The Mills Ratio is the ratio of complementary cumulative distribution function to the probability density
function. Mills ratio can be used in regression analysis to take account of a possible selection bias. Mills
Ratio for IBGSl(a,b,q) distribution is :

m(y) = I(0,1)(y)
1−G1(y)

g1(y)
+ (1− I(0,1)(y))

1−G2(y)

g2(y)

= I(0,1)(y)

{
1− β(a+q,b)yq

β(a,b)

qyq−1

β(a,b)
β(a+ q, b)

}

+ (1− I(0,1))(y)


β(a+q,b)−β( 1

y
,a+q,b)yq+β( 1

y
,a,b)

β(a,b)

qyq−1

β(a,b)
β
(

1
y
; a+ q, b

)


= I(0,1)(y)

{
β(a, b)− β(a+ q, b)yq

qyq−1β(a+ q, b)

}
+ (1− I(0,1))(y)

{
β(a+ q, b)− β( 1

y
, a+ q, b) + β( 1

y
, a, b)

qy(q−1)β( 1
y
, a+ q, b)

}
(3.6)

3.7 Order Statistics

Consider a random sample y1, y2,......,yn of size n drawn from IBGSl(a,b,q) distribution. Further, let y(1) <
y(2) < ......... < y(n) denote the order statistics corresponding to this sample. Then the probability density
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function of the kth order statistic is given by

f(k)(y) =
n!

(k − 1)!(n− k)!
[F (y)]k−1 [1− F (y)]n−k f(y)

Hence the density of kth order statistic for IBGSl(a,b,q) distribution is

g(k)(y) = I(0,1)(y)

[
n!

(k − 1)!(n− k)!

{
β(a+ q, b)yq

β(a, b)

}k−1{
1− β(a+ q, b)yq

β(a, b)

}n−k
qyq−1

β(a, b)
β(a+ q, b)

]

+ (1− I(0,1))(y)

[{
β( 1

y
, a+ q, b)yq − β(a+ q, b)− β( 1

y
, a, b)

β(a, b)

}k−1

{
β(a+ q, b) + β(

1

y
, a, b)− 1

y
, a+ q, b)yqβ(a, b)

}n−k
qyq−1

β(a, b)
β

(
1

y
; a+ q, b

)]
(3.7)

In particular, the p.d.f of the smallest order statistic y(1) is

g(1)(y) = I(0,1)(y)

[
n

{
1− β(a+ q, b)yq

β(a, b)

}n−1
qyq−1

β(a, b)
β(a+ q, b)

]

+ (1− I(0,1))(y)

[{
β(a+ q, b) + β( 1

y
, a, b)− β( 1

y
, a+ q, b)yq

β(a, b)

}n−1
qyq−1

β(a, b)
β

(
1

y
; a+ q, b

)]
(3.8)

The pdf of the largest order statistic y(n) is

g(n)(y) = I(0,1)(y)

[
n

{
β(a+ q, b)yq

β(a, b)

}n−1
qyq−1

β(a, b)
β(a+ q, b)

]

+ (1− I(0,1))(y)

[{
β( 1

y
, a+ q, b)yq − β(a+ q, b)− β( 1

y
, a, b)

β(a, b)

}n−1
qyq−1

β(a, b)
β

(
1

y
; a+ q, b

)]
(3.9)

3.8 Lorenz and Bonferroni Curve

The Bonferroni and Lorenz Curve are the most used tools in income inequality measurement. These two curves
are widely used in the field of reliability, demography, medicine and insurance. The Bonferroni and Lorenz
curves are defined as:

L(G(y)) = I(0,1)(y)

[
1

µ

∫ y

0

tg1(t)dt

]
+ (1− I(0,1)(y))

[
1

µ

∫ y

1

tg2(t)dt

]
(3.10)

B(G(y)) = I(0,1)(y)

[
1

µG1(y)

∫ y

0

tg1(t)dt

]
+ (1− I(0,1)(y))

[
1

µG2(y)

∫ y

1

tg2(t)dt

]
= I(0,1)(y)

[
L(G1(y))

G1(y)

]
+ (1− I(0,1)(y))

[
L(G2(y))

G2(y)

]
(3.11)

After simplifications,

L(G(y)) = I(0,1)(y)

[
β(a+ q, b)(a− 1)yq+1

β(a, b)(a+ b− 1)

]

−(1− I(0,1)(y))

[ (a− 1)
{
yq+1β

(
1
y
, a+ q, b

)
− β (a+ q, b) + β (a− 1, b)

}
β(a, b)(a+ b− 1)

(3.12)
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B(G(y)) = I(0,1)(y)

[
y(a− 1)

a+ b− 1

]

+(1− I(0,1)(y))

 (a− 1)
{
yq+1β( 1

y
, a+ q, b)− β (a+ q, b) + β (a− 1, b)

}
(a+ b− 1)

{
β
(

1
y
, a+ q, b

)
− β(a+ q, b)− β( 1

y
, a, b) + β(a, b)

}
 (3.13)

3.9 Hazard Rate Function

The hazard rate function is a very important tool in understanding about the failure mechanism of a lifetime
distribution. Hazard rate function can be used to postulate life distributions in the presence of several competing
risk factors. It measures the instantaneous rate at which a system or component is likely to fail, given that it
has survived up to a certain time. The hazard rate function of IBGSl(a,b,q) distribution is obtained by using
the following formula:

h(y) = I(0,1)(y)
g1(y)

1−G1(y)
+ (1− I(0,1)(y))

g2(y)

1−G2(y)

= I(0,1)(y)

[
qyq−1β (a+ q, b)

β (a, b)− yqβ (a+ q, b)

]

+ (1− I(0,1)(y))

[ qyq−1β
(

1
y
, a+ q, b

)
β (a+ q, b) + β

(
1
y
, a, b

)
− β

(
1
y
, a+ q, b

)] (3.14)

The hrf plot of IBGSl distribution for different values of parameters, is plotted in Fig. 3.

Fig. 3. Hazard rate function plots of the IBSl(a,b,q) distribution

4 Estimation

In this section, we discuss the maximum likelihood method of estimation for the unknown model parameters of
IBGSl(a,b,q). Let y1,y2,......,yn be a random sample of size n from IBGSl(a,b,q) distribution. Then the log -
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likelihood function is obtained as:

L(a, b, q,y) =

n∏
i=1

f(yi, a, b, q)

= L1(a, b, q, y) ∗ L2(a, b, q, y)

L1(a, b, q,y) =

n∏
i=1

g
I(0,1)(yi)

1

= g
∑n

i=1 I(0,1)(yi)

1

logL1(a, b, q,y) =

n∑
i=1

I(0,1)(yi)

[
log q + log β(a+ q, b)− log β(a, b) + (q + 1) log yi

]
(4.1)

Again,

L2(a, b, q,y) =
∏n

i=1 g
1−I(0,1)(yi)

1

= g
∑n

i=1 {1−I(0,1)(yi)}
2

= g
{n−

∑n
i=1 I(0,1)(yi)}

2

logL2(a, b, q,y) =

n∑
i=1

(
n− I(0,1)(yi)

) [
log q + log β

(
1

y
, a+ q, b

)
− log β(a, b) + (q + 1) log yi

]
(4.2)

logL(a, b, q,y) =

n∑
i=1

I(0,1)(yi)

[
log q + log β(a+ q, b)− log β(a, b) + (q + 1) log yi

]

+

n∑
i=1

(
n− I(0,1)(yi)

) [
log q + log β

(
1

y
, a+ q, b

)
− log β(a, b) + (q + 1) log yi

]
(4.3)

The maximum likelihood estimates (MLE) of the parameters are computed by solving the maximum likelihood
equations, which are given by

∂ logL

∂a
=⇒

n∑
i=1

I(0,1)(yi)

[
1

β(a+ q, b)

d

da
β(a+ q, b)− {ψ0(a)− ψ0(a+ b)}

]

+
(
n− I(0,1)(yi)

) 1

β
(

1
yi
, a, b

) d

da
β

(
1

yi
, a, b

)
− {ψ0(a)− ψ0(a+ b)}

 = 0 (4.4)

∂ logL

∂b
=⇒

n∑
i=1

I(0,1)(yi)

[
1

β(a+ q, b)

d

db
β(a+ q, b)− {ψ0(b)− ψ0(a+ b)}

]

+
(
n− I(0,1)(yi)

) 1

β
(

1
yi
, a, b

) d

db
β

(
1

yi
, a, b

)
− {ψ0(b)− ψ0(a+ b)}

 = 0 (4.5)
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∂ logL

∂q
=⇒

n∑
i=1

I(0,1)(yi)

[
1

q
+

1

β(a+ q, b)

d

dq
β(a+ q, b) + logyi

]

+
(
n− I(0,1)(yi)

)1
q
+

1

β
(

1
yi
, a+ q, b

) d

dq
β

(
1

yi
, a+ q, b

)
+ logyi

 = 0 (4.6)

The above maximum likelihood equations are not in closed form and so, they are difficult to be solved analytically.
Hence, we shall use a suitable numerical technique to solve the above equations for a, b and q. Here all the
calculations have been carried out using the R software version 3.6.3. The maxLik package is used to obtain the
maximum likelihood estimates of the parameters, the rootSolve package is used to generate random variables
from IBGSl distribution and zipfR package is used to evaluate the incomplete beta function.

5 Simulation

In this section, generation of random numbers from IBGSl(a,b,q) distribution is discussed. For different values
of a,b and q, we generate random samples of size 30, 100, 300,800 and 1000 from IBGSl(a,b,q). Finally, the
average values of bias and mean squared error (MSE) of these estimates are calculated by using the Monte Carlo
approximation technique, taking N = 1,000 replicates. The algorithm used in this simulation study is shown
below:

1. Simulate X ∼ BGSl(a, b, q)

2. Compute Y = 1
X

Y thus generated is a random number from the IBGSl(a,b,q) distribution. To calculate the average bias and
MSE of the likelihood estimates, we use the formulae as shown below :

Let the true value of the parameter a be a* and estimate be â. Then the bias and mean square error (MSE) of
â in estimating a is given by:

Bias(â) =
1

N

N∑
i=1

(âi − a∗) (5.1)

MSE(â) =
1

N

N∑
i=1

(âi − a∗)2 (5.2)

where N is the number of replications and âi is the MLE of â obtained in the ith replicate. Similarly, the bias
and MSE of b and q are calculated. It is well known that an estimate is consistent if the bias and MSE decreases
(approaches to zero) with an increase in the sample size. Table 3 shows the results of the simulation studies. It
is seen that the parameters are well estimated and the bias and MSE of all the estimators approaches towards
zero with an increase in the sample size. Hence, the estimates of the parameters can be believed to be consistent.

6 Application

To show the flexibility of the proposed distribution over some existing distributions in modeling heavy - tailed
data we apply these distributions to a real life data set. Data set representing vinyl chloride data from clean up
gradient monitoring wells in mg/l used by Bhaumik et al.(2009) has been considered . The data set comprises
of the observations:
5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1,
1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.
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Table 3. Average bias and RMSE for the estimates of IBGSl distribution

Parameters n â b̂ q̂

Bias(â) RMSE(â) Bias(b̂) RMSE(b̂) Bias(q̂) RMSE(q̂)

30 0.00650 0.00118 0.00507 0.00092 -0.00180 0.00033
100 0.00308 0.00030 0.00135 0.00013 -0.00187 0.00019
300 0.00307 0.00018 0.00108 0.00005 -0.00191 0.00011

(a=0.5, b=0.8, q=2.5) 500 0.00305 0.00014 0.00095 0.00004 -0.00193 0.00008
800 0.00242 0.00007 0.00099 0.00003 -0.00196 0.00006
1000 0.00180 0.00004 0.00033 0.00001 -0.00198 0.00004

30 0.03401 0.00621 0.00057 0.00034 -0.00419 0.00076
100 0.00448 0.00044 -0.00276 0.00027 -0.00418 0.00041
300 0.00236 0.00013 -0.00282 0.00016 -0.00416 0.00024

(a=1.5, b=3, q=5) 500 0.00192 0.00007 -0.00286 0.00012 -0.00415 0.00018
800 0.00174 0.00006 -0.00290 0.00010 -0.00414 0.00014
1000 0.00110 0.00003 -0.00293 0.00001 -0.00413 0.00013

The histogram of the data set exhibits a right skewed behavior, which may be aptly modelled by the proposed
distribution.

Using this data set, we compare the IBGSl distribution with Beta Generated Slash distribution (BGSl), Inverted
Weibull (IW) distribution ,Inverted Gamma (IG) and Beta Moyal Slash Distribution(BMSl) distribution. In
order to compare the distributions we calculate the log - likelihood, Akaike Information Criterion (AIC), the
Corrected Akaike Information Criterion (AICC), Kolmogorov-Smirnov (K-S) statistic and p-value. The model
with minimum AIC, AICC, KS statistic and p-value is chosen as the best model to fit the data.
The values of log - likelihood, AIC, AICC ,KS and p-value are shown in Table 4.

Table 4. Estimated parameters, AIC, AICC , K-S statistic and p-values of IBGSl(a,b,q) and
other competing distributions fitted to the data set

Distribution MLE log-likelihood AIC AICC K-S statisticp-value

â=2.098

IBGSl(a,b,q) b̂=3.797 56.765 119.530 120.189 0.106 0.025
q̂=0.9000848

â=1.227

BGSl(a,b,q) b̂=1.150 57.795 121.253 121.124 0.774 0.421
q̂=1.012

IW â=0.880 0

b̂=0.653 58.626 121.591 122.316 0.625 0.305

IG â=0.900

b̂=0.515 2008.242 4020.484021.129 0.771 0.264

BMSl â=0.20058

b̂=0.795 242.658 3587.633452.321 0.335 0.120

From the Table 4, it is been seen that the IBGSl distribution has minimum likelihood and AIC, AICC , K-
S statistic and p-value. Hence the IBGSl distribution performs well than the other competing distributions.
Furthermore, Fig. 4 and Fig. 5 shows the histogram of the data sets along with fitted pdfs and the empirical
cdf versus fitted cdfs for the data representing vinyl chloride from clean up gradient monitoring wells in mg/l.
These figures confirms that the goodness-of-fit of IBGSL distribution with respect to all the fitted distributions.
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Fig. 4. Plots of the estimated densities with histogram

Fig. 5. CDF plot of the observed data and fitted distributions

7 Conclusion

This paper introduces the inverted beta generated slash distribution having three parameters, which is an
inverted form of beta generated slash distribution. The various distributional aspects such as moments, skewness,
kurtosis, median, moment generating function, mean deviation, mills ratio, order statistics, Lorenz and Bonferroni
curves are studied. The method of maximum likelihood is used to estimate the parameters and a simulation
study is performed to study the finite sample behaviour of the ML estimates. The MLE’s are found to be
consistent and precise in estimating the true value of the parameters. To show the application of the proposed
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distribution, it is applied to a dataset representing vinyl chloride from clean up gradient monitoring wells in
mg/l. The fit of the proposed distribution is compared with beta generated slash distribution (BGSl), Inverted
Weibull (IW) distribution, Inverted Gamma (IG) distribution and Beta Moyal Slash distribution using log -
likelihood measure, AIC, AICC, K-S statistic and p-value. It is observed that the IBGSl distribution is a better
fit to the data as compared to the others. As a scope for future research,the enhanced flexibility of the proposed
distribution by introducing additional parameters or via suitable mathematical transformation can be explored
and its utitlity can be assessed through some real-life example.
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Genc, A. A., Korkmaz, M. Ç., & Kus, C. (2014). The beta Moyal-slash distribution. Journal of Selcuk University
Natural and Applied Science, 3(4), 88-104.
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