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Abstract
Nonparametric regression analysis has broad applications. In some cases, the regression function with
jumps (i.e., the regression curve is discontinuous) seems to be more appropriate to describe the related
phenomena. Existing a number of methods for estimating discontinuous curve, most of which are based on
the data is complete, which is unrealistic in many practical situations. In this paper, we consider estimating
discontinuous nonparametric model with missing covariate data. Based on inverse selection probability
weighted and jump-preserving techniques, a jump-preserving estimation procedure is proposed. The proposed
method is capable of automatically accommodating possible jumps in the nonparametric function, without
the requirement of prior knowledge regarding the number and locations of jump points. The proposed
estimator for the discontinuous regression function is shown to be oracally efficient in the sense that it is
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uniformly indistinguishable from that when the selection probabilities are known. Furthermore, it is proved
that the fitted curve by this procedure is consistent in the entire design space. Numerical simulation also
indicates the performance of finite sample of this method is efficient and reliable.

Keywords: Nonparametric model; Local linear kernel smoothing; Jump-preserving estimation; Inverse probability
weighted; Missing data.

1 Introduction

A basic nonparametric regression model for the dependence of the scalar response variable Y and its covariate
X has the form,

Y = g(X) + ε, (1)

where g(·) is an unknown measurable function of X to be estimated and model error ε has mean zero and finite
variance σ2. For the sake of simplicity, it is assumed that X come from a continuous distribution with density
fX(x) supported on the bounded interval [0, 1], it is independent of ε.

Nonparametric regression is an important branch in statistics, it has been well established as a useful data
analytic tool. See, for example, the monographs Fan and Gijbels (1996) for a large variety of interesting real
data examples where applications of such methods have yielded analyses essentially unobtainable by other
techniques. A large body of literature exists on regression function estimation, such as kernel estimation(see Fan
and Gijbels (1996), Claeskens and Van Keilegom (2003) and Wang et al. (2024)), local polynomial regression(see
Xiao et al. (2003), El Ghouch and Genton (2009) and López-Ureña and Yáñez (2024)), spline smoothing (see
Huang (2003), Wang and Yang (2009) and Storath and Weinmann (2024)), and so on.

The common assumption of above works is that the function g(·) is continuous. In many applications, however,
it may appear that a regression function is smooth except at an unknown finite number of points where jump
discontinuities may occur. For instance, in image processing, the intensity function of a digital image can be
regarded as a piecewise continuous regression surface, and jump regression analysis provides a natural framework
for image analysis (Qiu (2005)). In quality control, a jump in a quality index of a product indicates that the
production line could be out of control (Hawkins and Olwell (1998)). In oceanography, the sea-level pressure
in Bombay India has been found to have experienced an abrupt change in the early 1960s (Qiu (2003)). In
finance, possible jumps in the exchange rate between Korean won and U.S. dollar during December 1997 have
been identified by Joo and Qiu (2009). Therefore, the research on regression model with jumps is very necessary.

In recent decades, there are several researches to fit curves with jump points. McDonald and Owen (1986)
introduced a family of smoothing algorithm based on three local ordinary least-squares estimations of the
regression function, including the observations on the left, right, and both sides of a given point. Then, the fitted
value of a given point is obtained as a weighted average of these three estimations, with the weights depending on
the goodness-of-fit values of them. Afterward, Hall and Titterington (1992) proposed an alternative procedure
based on the detection of discontinuities by comparing three smooth fits at any given points. As usual, the
regression curves can be fitted by conventional smoothing methods in continuous intervals separated by these
detected jump points.

Besides the piecewise estimation methods above, some scholars proposed the local polynomial and kernel type
methods for jump detection and jump-preserving estimation. Qiu (2003) proposed a jump-preserving curve
fitting procedure based on the local linear kernel estimation. For each point, two one-sided local linear estimates
are considered, and based on the comparison of the weighted residual mean squares of the two one-sided fits,
the curve estimate at each point is obtained by one of the two estimates or their average. Furthermore, Gijbels
et al. (2007) proposed a compromise local linear jump-preserving method. The resulting estimators preserve the
jumps well and also give smooth estimates of the continuity parts of the curve. But a threshold parameter is
introduced in the procedure, and the choice for it may increase the computation burden. For this reason, Qiu
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(2009) presented another method to distinguish smooth regions and discontinuous regions based on the fact that
the variance of the two-sided estimator is about twice as that of the one-sided estimator. The method does not
need to compute the threshold parameter, hence is easier to implement.

For jump detection and other models, Xia and Qiu (2015) suggested a jump information criterion to estimate
the discontinuous curve when the number of jumps is unknown. By minimizing the criterion function which
consists of a term measuring the fidelity of the estimated regression curve to the observed data and a penalty
with respect to the number of jumps and the jump magnitudes, the number of jumps is obtained. Kang et
al. (2021) proposed a jump-preserving backfitting procedure for jump additive model. It extends existing jump
regression methods to problems where multiple predictors need to be considered. Additional works have Yang
and Song (2014), Zhao et al. (2016), Han et al. (2020) and Wang et al. (2022), among others.

All the above related works for nonparametric regression are for fully observed data. However, in many
applications, it is inevitable that some information maybe lost in the collection process of a large amount
of data due to uncontrollable factors. For instance, in clinical trials, missing values exist for a variety of reasons,
such as patient refusal to continue in the study, treatment failure or success, adverse events, patient moves, etc.
In social surveys, respondents may refuse to answer questions about their income. In industrial experiments,
some experimental results are not recorded completely due to various reasons. Such data is usually called by
missing data, see Kim and Shao (2013) and Little and Rubin (2019) for an introduction on missing data and
many examples.

In the presence of missing data, the standard inference procedures cannot be applied directly. The simplest
approach to deal with missing data is to remove those observations with incomplete data, then perform a
regression based or likelihood based analysis with the remaining complete data. This method is known as
complete case analysis. However, it is well known that the complete case analysis can be biased when the data is
not missing completely at random (MCAR) (see Little and Rubin (2019)) and generally gives highly inefficient
estimates. Thus to increase efficiency and reduce the bias, it is important to develop methods to deal with
missing data.

A series of efforts have been made to deal with missing data. One method is to impute a plausible value for each
missing datum and then analyze the results as if they are complete. In regression problems, commonly used
imputation approaches include linear regression imputation (see Healy and Westmacott (1956)), nonparametric
kernel regression imputation (see Wang and Rao (2002b)), semiparametric regression imputation (see Wang et
al. (2004)), among others. There has been considerable interest in the statistical literature on analysis of missing
data using the empirical likelihood method, see, for example, Wang and Rao (2002a), Liang et al. (2007) and
Stute et al. (2007), among others. These approaches impute the missing data by a kernel regression function of
the observed data and then use empirical likelihood to constructing confidence intervals from the observed and
the imputed data.

In addition, the inverse probability weighted (IPW) method (see Horvitz and Thompson (1952)) is also popular
method to handle missing data, this method assigns a weight to each complete observation by the inverse
probability of it being completely observed. Wooldridge (2007) discussed the inverse probability weighted
estimation for general missing data problems. Wang (2009) consider the partial linear model with the covariables
missing at random using the inverse probability weighted approach. Seaman and White (2013) reviewed inverse
probability weighted for the missing data analysis.

Nonparametric regression method to deal with missing data was discussed relatively less. For missing covariates,
Wang et al. (1998) used IPW local linear regression in generalised linear model; Liang et al. (2004) considered
a nonparametric estimator in a partially linear model. For missing outcomes, Wang et al. (2010) developed a
doubly robust local linear estimator and Sun et al. (2020) generalised it to the multiple robustness; Chen et al.
(2006) constructed a few local quasi-likelihood estimators; estimating equations with nonparametric inputted
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values were developed by Zhou et al. (2008), and Wang et al. (2019) considered the case where the covariate is
functional. Efromovich generalised the orthogonal series estimator in the cases of missing covariates (Efromovich
(2011a)) and missing outcomes Efromovich (2011b).

For model (1), when the regression is discontinuous, and the data is missing at the same time, none of
the individual methods described above are suitable for estimating the model. Li et al. (2023) studied the
discontinuous nonparametric regression curve fitting when response is missing. Naturally, we are interested in
the case of missing covariate. In order to show Xi is incomplete, denote δi as a missing indicator, that is, δi = 1
means Xi is completely observed and δ = 0 otherwise. To deal with missing covariate, we assume that Xi is
missing at random (MAR) in the sense that

πi = π(Yi) = P (δ = 1|Xi, Yi) = P (δ = 1|Yi). (2)

The MAR assumption implies that δi and Xi are conditionally independent given Yi, that is, P (δ = 1|Xi, Yi) =
P (δ = 1|Yi). MAR is a common assumption for handling missing data and such assumption is also reasonable
in many applications, see Little and Rubin (2019).

This paper focuses on the estimation of discontinuous regression curve with missing covariate. By the inverse
probability weighted techniques and local linear kernel smoothing, we construct the jump-preserving estimation.
The procedure is capable of adapting to both continuous intervals and neighbourhoods of jumps of the nonparametric
function needn’t for prior estimation of the the number and locations of jump points. Indeed, the resulting
estimator represents a compromise between local linear smoothing and jump-preserving, which is implemented
by a threshold. For our proposed estimators, it is shown to be oracally efficient in the sense that the estimator
with estimated selection probabilities under a correctly specified model is uniformly as efficient as that with true
selection probabilities. Besides, a brief discussion is also held regarding the detection of jump points, along with
practical selection of procedure parametrics. Moreover, the asymptotical properties of proposed estimators are
presented. Numerical simulation indicates the performance of finite sample of this method is efficient.

In general, the proposed method can not only fit discontinuous function, but also deal with missing data.
Compared with the existing methods, it can handle both cases at the same time, which is the innovation of this
paper. Therefore, the application of this method is wider.

The rest of this paper is organized as follows. Section 2 first recalls the jump-preserving method with complete
data, then presents the detailed procedure and main theoretical results for the proposed method. Some numerical
studies are conducted to evaluate the finite sample properties of the proposed estimators in Section 3. A brief
conclusion is given in Section 4. Technical proofs are presented in the Appendix.

2 Methodology and Main Results

In this section, we will consider the curve fitting for the nonparametric regression model (1) with unknown
jumps and missing data in covariate. For jump structure, suppose that the number of jump points is J , and let
sj ∈ (0, 1) denotes the jth jump point of g(·) with jump magnitudes dj , where j = 1, 2, . . . , J . Without loss of
generality, we assume that g(·) is right-continuous at each jump point. The number of jump points J , the jump
locations sj ’s and the jump magnitudes dj ’s are all unknown.

2.1 Review the jump-preserving method

In this Subsection, we firstly review the local linear jump regression curve fitting method with complete data.
Then we extend this method into the context of missing data by virtual of inverse probability weighting method.

Suppose that {(Xi, Yi), 1 ≤ i ≤ n} is an independent and identically distributed (i.i.d.) random sample observed
fully from (1). When g(·) is a continuous function, Fan and Gijbels (1996) proposed local linear smoothing
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method to estimate g(·). Specifically, to estimate the regression function g(·) at a given point x ∈ [0, 1], one can
approximate

g(u) ≈ g(x) + g′(x)(u− x) = a+ b(u− x),

for u in a small neighbourhood of the given point x, where a = g(x) and b = g′(x). Then, the local parameter
(a, b) is estimated by minimising the following weighted least-squares function:

n∑
i=1

{Yi − a− b(Xi − x)}2Kh(Xi − x), (3)

where Kh(t) = h−1K(t/h), a rescaled kernel function of K(t) with a bandwidth h. Commonly K(·) is chosen to
be a bounded symmetric probability density function (conventional or center kernel) with support [−τ, τ ]. The
bandwidth h = h(n) > 0 is a sequence of positive constant that converge to zero with sample size n approaching
infinity. We will suppress the dependence of bandwidth h on n in what follows.

The solution of (3) for a is defined as the conventional local linear kernel estimator of g(·). This local linear
procedure has been popular in the literature due to its simplicity of computation and nice asymptotic properties.
However, this method requires the continuity of curve function, and it is known that the fitted function based on
conventional local linear kernel methods is not statistically consistent at jump positions where g(·) has jumps.
To deal with this problem, some jump-preserving estimation methods were proposed. Now we briefly review
techniques given by Qiu (2003) and Gijbels et al. (2007).

For fixed x ∈ [0, 1], the following three local linear estimators are defined by

argmin
a,b

n∑
i=1

{Yi − a− b(Xi − x)}2Kd

(
Xi − x

h

)
, (4)

where Kc(x) = K(x)

Kl(x) =

{
K(x), if x ∈ [−τ, 0),

0, otherwise;
and Kr(x) =

{
K(x), if x ∈ [0, τ ],

0, otherwise.

The subscripts “l”, “c”and “r” in notations {Kl,Kc,Kr} represent “left”, “centre” and “right”, respectively,
which are also used in other notation defined below.

Let {âd(x), b̂d(x), d = c, r, l} denote the solutions of (4). Obviously the estimators âc(x) are the usual local
linear estimators of g(x), based on data in the neighbourhood [x − τh, x + τh] of x, and âl(x) and âr(x) are
constructed from observations in the left-sided interval [x−τh, x) and right-sided interval [x, x+τh], respectively.

From Proposition 2.3 in Gijbels et al. (2007), the three estimators are consistent in mean square sense and have
the same rate of convergence in continuity regions of g(·). From Proposition 2.4 in Gijbels et al. (2007), however,
it can be found that only âl(x) is consistent, nevertheless, âc(x) and âr(x) are not consistent at any point in the
neighbourhood [sj − τh, sj). A similar discussion can be given for points on the right-side interval of the jump
point sj . That is, when there is no jump in [x − τh, x + τh], all of them estimate g(·) well. In the case when
x itself is not a jump point but a jump point exists in its neighborhood [x− τh, x+ τh], only one of âl(x) and
âr(x) provides a good estimator of g(·). Therefore, it need to choose one from three estimators as an estimator
of g(·) in such case.

Qiu (2003) suggested the following jump-preserving estimate of g(·)

ĝQ(x) = âl(x)I
∗(RSSr(x)− RSSl(x)) + âr(x)I

∗(RSSl(x)− RSSr(x)),
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where I∗(t) is defined by I∗(t) = 1 if t > 0, 1/2 if t = 0 and 0 if t < 0. And RSSl(x) and RSSr(x) are the
weighted residual sums of squares (RSS) with respect to observations in [x− τh, x) and [x, x+ τh], respectively.
That is

RSSl(x) =
∑
Xi<x

{
Yi − âl(x)− b̂l(x)(Xi − x)

}2

K

(
Xi − x

h

)
,

RSSr(x) =
∑
Xi≥x

{
Yi − âr(x)− b̂r(x)(Xi − x)

}2

K

(
Xi − x

h

)
.

Basically, ĝQ(x) is defined by one of âl(x) and âr(x) with the smaller RSS value. Qiu (2003) proved that ĝQ(x)
is a consistent estimator of g(x) in the entire design interval.

In practice, it appears that ĝQ(x) preserves jumps well, but is quite noisy in continuity regions of g(·), due
to the fact that only one-sided (left- or right-sided) observations are used in its construction. Consequently,
by combining all these considerations, Gijbels et al. (2007) introduced the conventional estimator âc(x), and
proposed the following jump-preserving estimate of g(·)

ĝG(x) =


âc(x), if diff(x) ≤ λ,

âl(x), if diff(x) > λ and WRMSl(x) < WRMSr(x),

âr(x), if diff(x) > λ and WRMSl(x) > WRMSr(x),

(âl(x) + âr(x))/2, if diff(x) > λ and WRMSl(x) = WRMSr(x),

(5)

where λ is a threshold and

diff(x) = max{WRMSc(x)−WRMSl(x),WRMSc(x)−WRMSr(x)}.

In (5), the weighted residual mean squares (WRMSs) are defined by

WRMSd(x) =

∑n
i=1

[
Yi − âd(x)− b̂d(x)(Xi − x)

]2
Kd

(
Xi−x

h

)
∑n

i=1 Kd

(
Xi−x

h

) .

to evaluate the quality of the three local linear fits. Gijbels et al. (2007) proved the (uniform) strong consistency
of ĝG(x).

2.2 Estimation when πi is known

Suppose that there are n i.i.d. observations {(Xi, Yi, δi), i = 1, 2, . . . , n}, where δi = 1 if Xi is observed and
δi = 0 otherwise. When covariates are MAR, the complete case analysis in (4) by using only fully observed
(Xi, Yi) can result in a biased estimator for g(·). In this Subsection, we first assume that the missing data
probability πi is known, and will consider the case in which πi is unknown in next Subsection.

To estimate the latent discontinuous function g(·) incorporating missing data, we combine jump-preserving
method in Gijbels et al. (2007) and the inverse probability weighted techniques (see Horvitz and Thompson
(1952)). Specifically, for fixed x ∈ [0, 1], the following three inverse probability weighted local linear estimators
are proposed

argmin
a,b

n∑
i=1

δi
πi

{Yi − a− b(Xi − x)}2Kd

(
Xi − x

h

)
, (6)
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for d = c, l, r. Since the variables are subject to missingness, only fully observed cases δi = 1 contribute to
the objective function (6), and the selection bias is adjusted by inverse of the conditional probability of being a
complete case.

The solutions to ad and bd of the minimization problem (6) are denoted as âd(x) and b̂d(x), d = c, l, r, respectively.
By some routine algebraic manipulations, âd(x) have nice and simple expressions:

âd(x) =

n∑
i=1

δi
πi

Kd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

Yi,

where Sj,d =
∑n

i=1
δi
πi
Kd

(
Xi−x

h

)
(Xi − x)j for j = 0, 1, 2, d = c, l, r.

It is easy to see that âl(x) and âr(x) are actually local linear kernel estimators of g(x) constructed from
observations in the left-sided neighborhood [x−τh, x) and the right-sided neighborhood [x, x+τh], respectively.
However, the estimators âc(x) are the usual local linear estimator of g(x), based on data in the neighbourhood
[x−τh, x+τh] of x. Similarly with the approach in Gijbels et al. (2007), we propose the following compromising
estimator

ĝ(x) =


âc(x), if diff(x) ≤ λ,

âl(x), if diff(x) > λ and WRMSl(x) < WRMSr(x),

âr(x), if diff(x) > λ and WRMSl(x) > WRMSr(x),

(âl(x) + âr(x))/2, if diff(x) > λ and WRMSl(x) = WRMSr(x).

(7)

In the missing data case, based on inverse probability weighting, we introduce the modified weighted residual
mean squares (WRMS) WRMSd(x), defined by

WRMSd(x) =

∑n
i=1

δi
πi

[
Yi − âd(x)− b̂d(x)(Xi − x)

]2
Kd

(
Xi−x

h

)
∑n

i=1
δi
πi
Kd

(
Xi−x

h

) ,

for d = c, l, r. In (7),

diff(x) = max{WRMSc(x)−WRMSl(x),WRMSc(x)−WRMSr(x)},

and λ is a suitably chosen threshold, such that away from the irregularities the two-sided estimator is chosen
and the appropriate one-sided estimator is chosen close to them.

Obviously, diff(x) is a natural jump detection criterion. If x is a jump point, then diff(x) would be relatively
large. By (7), thus, when x is far away from any jump points, g(x) would be estimated by the conventional (or
centered) kernel local linear fitting. It would still be estimated by one of the one-sided estimates around the
jump points.

Next, we establish the asymptotic properties of the proposed estimators ĝ(x). Their proofs are given in the
Appendix. To proceed, we introduce some notations. Let µk,d =

∫
tkKd(t)dt for d = c, l, r. Furthermore,

the support [0, 1] of g(·) can be divided into two regions depending on whether g(·) is continuous: (i) the
neighborhoods of jump points D2 =

⋃J
j=1(sj − τh, sj + τh); (ii) the continuous regions D1 = [0, 1]\D2. The

region D2 can be further separated by two parts D2,l =
⋃J

j=1(sj − τh, sj) and D2,r =
⋃J

j=1(sj , sj + τh) to
represent the left and right neighborhood of the jump points, respectively. The following technical assumptions
are imposed.

(A1) The error ε has mean zero and finite variance σ2, and E(ε4) < ∞. Moreover,
∫
ε2fX,ε|δ=1(x, ε)dε has

a positive lower bound for all x ∈ [0, 1], where fX,ε|δ=1(x, ε) is the joint density function of (X, ε) given
δ = 1.
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(A2) Let fX(x) be the density function of X. fX(x) is twice differentiable for x ∈ [0, 1]. We only require
one-sided twice differentiability when x = 0 or x = 1. That is, for m = 0, 1, we assume

lim
x→0+

f
(m)
X (x)− f

(m)
X (0)

x
and lim

x→1−

f
(m)
X (x)− f

(m)
X (1)

x− 1

exist, sup |f (m)
X (x)| < ∞ for m = 0, 1, 2.

(A3) Suppose that g(·) is second-order differentiable and g′′(·) is uniformly bounded on [0, 1] except the jump
points {sj , j = 1, . . . , J} at which g(·) has left and right bounded second-order derivatives.

(A4) K(·) is a symmetric probabiltiy density function with a bounded support, and is uniformly Lipschitz
continuous.

(A5) h → 0 and nh3 → ∞ as n → ∞.

(A6) inf1≤i≤n {π(Yi)} ⩾ C > 0 with probability one for some constant C.

The aforementioned assumptions are not the weakest possible assumptions, but they are imposed to facilitate the
proofs. Conditions (A1)-(A3) ensure the rationality of local linear approximation; condition (A4) and (A5) are
the conventional condition in the kernel estimation method; condition (A6) ensures the effectiveness of inverse
probability weighted.

Theorem 1. Under the regularity assumptions (A1)–(A6), the mean squared errors (MSE) of the three estimators
of the function g(·) are as follows:

(i) For any x ∈ D1,

MSE(âd(x)) =

[
1

2
h2g′′(x)Bd

]2
+

1

nhf2
X(x)

P (δ1 = 1)VdS(x) + o

(
h4 +

1

nh

)
, d = c, l, r,

(ii) For any x ∈ D2,l, that is, x = sj + uh with u ∈ (−τ, 0), we have

MSE(âl(x)) =

[
1

2
h2g′′(sj−)Bl

]2
+

1

nhf2
X(x)

P (δ1 = 1)VlS(x) + o

(
h4 +

1

nh

)
,

MSE(âr(x)) =

[
dj

∫ τ

|u|
Kr(t)

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VrS(x) + o

(
1

nh

)
,

MSE(âc(x)) =

[
dj

∫ τ

|u|
Kc(t)dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VcS(x) + o

(
1

nh

)
.

(iii) For any x ∈ D2,r, that is, x = sj + uh with u ∈ [0, τ), we have

MSE(âl(x)) =

[
−dj

∫ −|u|

−τ

Kl(t)
µ2,l − µ1,lt

µ0,lµ2,l − µ2
1,l

dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VlS(x) + o

(
1

nh

)
,

MSE(âr(x)) =

[
1

2
h2g′′(sj+)Br

]2
+

1

nhf2
X(x)

P (δ1 = 1)VrS(x) + o

(
h4 +

1

nh

)
,

MSE(âc(x)) =

[
−dj

∫ −|u|

−τ

Kc(t)dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VcS(x) + o

(
1

nh

)
,

where

Bd =
µ2
2,d − µ1,dµ3,d

µ0,dµ2,d − µ2
1,d

, Vd =

∫ τ

−τ

K2
d(t)

[
µ2,d − µ1,dt

µ0,dµ2,d − µ2
1,d

]2
dt and

S(x) =

∫
1

π2(g(x) + ε)
ε2fX,ε|δ=1(x, ε)dε.
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Theorem 1 gives the asymptotic bias and asymptotic variance of the three estimators. As a matter of fact,
it extends the results of the three local linear estimators from complete data to the case of missing data.
Specifically, when data is observed completely, i.e., π(y) = 1, P (δ1 = 1) = 1, S(x) reduces σ2fX(x). In such a
case, the result degenerates to that for the local linear estimators for fully observed data, see Gijbels et al. (2007).

From Theorem 1(i), we can conclude that the three estimators are consistent in mean square sense and have
the same rate of convergence in continuity regions of g(x). The asymptotic expressions in (ii) reveals that âr(x)
and âc(x) are not consistent at any point in the neighbourhood [sj − τh, sj) which is uh away from sj with
u ∈ [−τ, 0). However, âl(x) is consistent. A similar discussion can be given for points on the right-side interval
of the jump point sj , that is, only âr(x) is consistent, but âl(x) and âc(x) are inconsistent.

Theorem 2. Under the regularity assumptions (A1)–(A6), the asymptotic expressions of WRMSs are as follows:

(i) For any x ∈ D1,
WRMSd(x) = σ2 +Rd,1(x), d = c, l, r,

where Rd,1(x) are random variables tending to 0 almost surely and uniformly in x ∈ D1.

(ii) For any x ∈ D2,l, that is, x = sj + uh with u ∈ (−τ, 0), we have

WRMSl(x) = σ2 +Rl,2(x),

WRMSr(x) = σ2 + d2jC
2
u,r +Rr,2(x),

WRMSc(x) = σ2 + d2jC
2
u,c +Rc,2(x),

where Rd,2(x) are random variables tending to 0 almost surely and uniformly in x ∈ D2,l.

(iii) For any x ∈ D2,r, that is, x = sj + uh with u ∈ [0, τ), we have

WRMSr(x) = σ2 +Rr,3(x),

WRMSl(x) = σ2 + d2jC
2
u,l +Rl,3(x),

WRMSc(x) = σ2 + d2jC
2
u,c +Rc,3(x),

where Rd,3(x) are random variables tending to 0 almost surely and uniformly in x ∈ D2,r.

in which

C2
u,d =

∫ τ

−u

[∫ −u

−τ

µ2,d − µ1,dt

µ0,dµ2,d − µ2
1,d

Kd(t)dt− z

∫ τ

−u

µ0,dt− µ1,d

µ0,dµ2,d − µ2
1,d

Kd(t)dt

]2
Kd(z)dz

+

∫ −u

−τ

[∫ τ

−u

µ2,d − µ1,dt

µ0,dµ2,d − µ2
1,d

Kd(t)dt+ z

∫ τ

−u

µ0,rt− µ1,d

µ0,dµ2,d − µ2
1,d

Kd(t)dt

]2
Kd(z)dz.

The asymptotic expressions of WRMS lead to a similar result as Theorem 1. From Theorem 2 (i), in continuity
regions of g(x), the three WRMS quantities are consistent estimators of σ2. The asymptotic expressions in (ii)
reveal that only WRMSl(u) is a consistent estimator for σ in the left-sided of the neighborhood of jump point,
i.e., any u ∈ D2,l, while WRMSr(u) and WRMSc(u) are affected by the jump at sj . Similarly, in the right-sided
of the neighborhood of jump points, i.e., any u ∈ D2,r, only WRMSr(u) is a consistent estimator, WRMSl(u)
and WRMSc(u) are inconsistent.

Theorem 3. Under the regularity assumptions (A1)–(A6), for any x ∈ [0, 1], as n → ∞, the estimate ĝ(x) has
the following asymptotic distribution:
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√
nh

[
ĝ(x)− g(x)− 1

2
h2g′′(x)Bd

]
D−→ N

(
0,

1

f2
X(x)

P (δ1 = 1)S(x)Vd

)
,

where “
D−→” means convergence in distribution, Bd, Vd and S(x) are defined in Theorem 1. Here, when x ∈ D2,l

and D2,r, g
′′(x) is replaced by g′′(sj−) and g′′(sj+) respectively, the left and right limits of g(·) at the point sj.

Theorem 3 reveals that the resulting estimator ĝ(x) is asymptotically normal on the whole support of x.
Specifically, ĝ(x) is asymptotically normal when u ∈ D1, Bc and Vc; u ∈ D2,l, Bl and Vl; u ∈ D2,r, Br and
Vr are used. Moreover, similar to the discussion in Theorem 1, if π(y) = 1 and P (δ1 = 1) = 1 the asymptotic
distribution of ĝ(x) reduces to that of the estimator when data is observed completely, see Li and Racine (2007).

2.3 Estimation when πi is unknown

In fact, the selection probability function πi is generally unknown but can be estimated. To estimate πi, we
now consider the case that it is a parametric model, denoted by π(Yi, α), where α is some unknown parameter
vector that needs to be estimated.

Here, π(Yi, α) is assumed to be a logistic model, i.e.,

π(Yi, α) = P (δ = 1|Yi) =
eα0+α1Yi

1 + eα0+α1Yi
,

where α = (α0, α1)
⊤. By applying the maximum likelihood approach, one easily obtains a root-n-consistent

estimate α̂, see Robins et al. (1994) and Wang et al. (1998) for related studies and Hosmer Jr et al. (2013) for
a global statistic test for examining the pre-assumed binary regression model. Denote the resulting selection
probability function estimator π̂i := π(Yi, α̂), i = 1, . . . , n. Thus, replacing πi in (6) with π̂i, we obtain the three
associated estimators âd(·, π̂) of g(·), they have the following expressions:

âd(x, π̂) =

n∑
i=1

δi
π̂i

Kd

(
Xi − x

h

)
Ŝ2,d − Ŝ1,d(Xi − x)

Ŝ0,dS2,d − Ŝ2
1,d

Yi,

where Ŝj,d =
∑n

i=1
δi
π̂i
Kd

(
Xi−x

h

)
(Xi − x)j for j = 0, 1, 2, d = c, l, r. Note that âd(·, π̂) is used to emphasise

its dependence on the estimator π̂. The same is true for the following estimators, for which the value of π̂ is
provided in parentheses.

Similarly, as discussed in (7), by replacing πi with π̂i, the resulting estimator ĝ(·, π̂) of g(·) is derived by

ĝ(x, π̂) =


âc(x, π̂), if diff(x, π̂) ≤ λ,

âl(x, π̂), if diff(x, π̂) > λ and WRMSl(x, π̂) < WRMSr(x, π̂),

âr(x, π̂), if diff(x, π̂) > λ and WRMSl(x, π̂) > WRMSr(x, π̂),

(âl(x, π̂) + âr(x, π̂))/2, if diff(x, π̂) > λ and WRMSl(x, π̂) = WRMSr(x, π̂).

(8)

where

WRMSd(x, π̂) =

∑n
i=1

δi
π̂i

[
Yi − âd(x, π̂)− b̂d(x, π̂)(Xi − x)

]2
Kd

(
Xi−x

h

)
∑n

i=1
δi
π̂i
Kd

(
Xi−x

h

) ,

for d = c, l, r. In (8),

diff(x, π̂) = max{WRMSc(x, π̂)−WRMSl(x, π̂),WRMSc(x, π̂)−WRMSr(x, π̂)}.

When x is in boundary regions [0, τh) and (1− τh, 1], the estimator of g(x) is not defined by (8). In such cases
there are several possible approaches to estimate g(x) if no jumps exist in [0, τh) and (1− τh, 1]. For example,
ĝ(x, π̂) could be defined by the conventional local linear kernel estimator constructed from observations in
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[0, x + τh) or (x − τh, 1] depending on whether x ∈ [0, τh) or x ∈ (1 − τh, 1]. If there are jump points in
[0, τh) or (1− τh, 1]. For convenience, we define ĝ(x, π̂) = âr(x, π̂) when x ∈ [0, τh) and ĝ(x, π̂) = âl(x, π̂) when
x ∈ (1− τh, 1].

Next, we establish the asymptotic properties of the above estimators. Here, it is assumed that the parametric
model for π is correctly specified so that the estimator α̂ satisfies α̂−α = Op(n

−1/2). The following Theorem 4
compares the difference between the estimator based on the true π and that based on the estimated π̂. In order
to obtain this theorem, it is necessary to fulfil the following additional condition:

(A7) The selection probability function π̂ follows a parametric binary model. Moreover, it has bounded second
order partial derivative with respect to y and has bounded first order partial derivative with respect to
α.

Theorem 4. Under the assumptions (A1)-(A7), as n → ∞,

sup
x∈[0,1]

|ĝ(x, π̂)− ĝ(x)| = Op(n
−1/2).

Combining this Theorem and Theorems 1-3, when the selection probability function π is replaced by π̂, it is
easy to show the following results:

Theorem 5. Under the regularity assumptions (A1)–(A7), the mean squared errors (MSE) of the three estimators
of the function g(·) are as follows:

(i) For any x ∈ D1,

MSE(âd(x, π̂)) =

[
1

2
h2g′′(x)Bd

]2
+

1

nhf2
X(x)

P (δ1 = 1)VdS(x) + o

(
h4 +

1

nh

)
, d = c, l, r,

(ii) For any x ∈ D2,l, that is, x = sj + uh with u ∈ (−τ, 0), we have

MSE(âl(x, π̂)) =

[
1

2
h2g′′(sj−)Bl

]2
+

1

nhf2
X(x)

P (δ1 = 1)VlS(x) + o

(
h4 +

1

nh

)
,

MSE(âr(x, π̂)) =

[
dj

∫ τ

|u|
Kr(t)

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VrS(x) + o

(
1

nh

)
,

MSE(âc(x, π̂)) =

[
dj

∫ τ

|u|
Kc(t)dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VcS(x) + o

(
1

nh

)
.

(iii) For any x ∈ D2,r, that is, x = sj + uh with u ∈ [0, τ), we have

MSE(âl(x, π̂)) =

[
−dj

∫ −|u|

−τ

Kl(t)
µ2,l − µ1,lt

µ0,lµ2,l − µ2
1,l

dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VlS(x) + o

(
1

nh

)
,

MSE(âr(x, π̂)) =

[
1

2
h2g′′(sj+)Br

]2
+

1

nhf2
X(x)

P (δ1 = 1)VrS(x) + o

(
h4 +

1

nh

)
,

MSE(âc(x, π̂)) =

[
−dj

∫ −|u|

−τ

Kc(t)dt

]2
+

1

nhf2
X(x)

P (δ1 = 1)VcS(x) + o

(
1

nh

)
,

Theorem 6. Under the regularity assumptions (A1)–(A7), the asymptotic expressions of WRMSs are as follows:

(i) For any x ∈ D1,
WRMSd(x, π̂) = σ2 +R∗

d,1(x), d = c, l, r,

where R∗
d,1(x) are random variables tending to 0 almost surely and uniformly in x ∈ D1.
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(ii) For any x ∈ D2,l, that is, x = sj + uh with u ∈ (−τ, 0), we have

WRMSl(x, π̂) = σ2 +R∗
l,2(x),

WRMSr(x, π̂) = σ2 + d2jC
2
u,r +R∗

r,2(x),

WRMSc(x, π̂) = σ2 + d2jC
2
u,c +R∗

c,2(x),

where R∗
d,2(x) are random variables tending to 0 almost surely and uniformly in x ∈ D2,l.

(iii) For any x ∈ D2,r, that is, x = sj + uh with u ∈ [0, τ), we have

WRMSr(x, π̂) = σ2 +R∗
r,3(x),

WRMSl(x, π̂) = σ2 + d2jC
2
u,l +R∗

l,3(x),

WRMSc(x, π̂) = σ2 + d2jC
2
u,c +R∗

c,3(x),

where R∗
d,3(x) are random variables tending to 0 almost surely and uniformly in x ∈ D2,r.

Theorem 7. Under the regularity assumptions (A1)–(A7), for any x ∈ [0, 1], as n → ∞, the estimate ĝ(x, π̂)
has the following asymptotic distribution:

√
nh

[
ĝ(x, π̂)− g(x)− 1

2
h2g′′(x)Bd

]
D−→ N

(
0,

1

f2
X(x)

P (δ1 = 1)S(x)Vd

)
,

From Theorems 5-7, when π is replaced by its consistent estimator π̂, the asymptotic property of our proposed
estimators yields the same results as described in Subsection 2.2.

Above, we have given the fitting curve of the discontinuous function and the asymptotic property of the
estimators. For further study, we estimate the structure of the jump points next. In order to achieve this
goal, it follows from Theorem 6 that diff(x, π̂) is an appropriate criterion for detecting jumps. If there exists
a jump point around x, the jump detection criterion diff(x, π̂) will be relatively large. Otherwise, it will be
relatively small. Therefore, diff(x, π̂) can be used to detect the jumps.

In practice, if diff(x, π̂) is large enough, i.e., diff(x, π̂) > λ, then x can be regarded as a jump point, where λ is
a a threshold. However, the points in the neighbourhood of true jump points maybe wrongly regarded as jumps
even if they are actually not. To delete those false jump points, inspired by Qiu (1994), we suggest the following
jump detection procedure. Let {x∗

i , i = 1, 2, . . . ,m} be the set of detected jump points satisfying

diff(x∗
i , π̂) ≥ λ, for i = 1, 2, . . . ,m.

If there are integers 1 ≤ t1 ≤ t2 ≤ m such that x∗
j − x∗

j−1 ≤ τh, for j = t1 + 1, . . . , t2, x
∗
t1 − x∗

t1−1 > τh, and
x∗
t2+1 − x∗

t2 > τh, then the set {x∗
t1 , x

∗
t1+1, . . . , x

∗
t2} forms a tie in {x∗

i , i = 1, 2, . . . ,m} and the entire tie set
is replaced by its central point (x∗

t1 + x∗
t2)/2 for estimating the jump positions. After this modification, the

detected jump points and the corresponding jump magnitudes are denoted as

ŝj , d̂j = âr(ŝj , π̂)− âl(ŝj , π̂), for j = 1, 2, . . . , Ĵ .

2.4 Choice of procedure parameters

In Subsection 2.3, we get the expression of the estimator in (8). In practice, the bandwidth parameter h
and threshold λ need to be chosen. In an ideal scenario, the available bandwidth h should be adaptable to
accommodate the unknown curve. This would require the implementation of a variable bandwidth approach.
However, variable bandwidth selectors are typically complicated and computationally demanding. Nevertheless,
they are not always capable of adapting to all jumps. In this paper, therefore, we use a simple procedure based
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on leave-one-out cross-validation (see Rice and Silverman (1991)), obtaining the global bandwidth and threshold
as

(ĥ, λ̂) = argmin
h,λ

n∑
i=1

δi
[
Yi − ĝ(−i)(Xi)

]2
, (9)

where ĝ(−i)(·) is the “leave-one-out” estimator of g(·) based on the sample with ith subject data deleted. Namely,
the observation (Xi, Yi) is left out in constructing ĝ(−i)(Xi), for i = 1, 2, . . . , n.

To solve the minimization problem in (9), we need to specify a grid for the λ-values. A suitable range of threshold
λ can be obtained by looking at the result in Theorem 6. We propose taking λmax = d2 maxu C2

u,c as an upper
bound for a range of values for λ. The quantity d can be estimated by supx|âl(x, π̂)− âr(x, π̂)|. When we detect
the jump points, the value of threshold λ should not be very small, in fact, it is chosen to be the 0.9th quantile
of {diff(Xi, π̂), i = 1, 2, . . . , n}.

3 Numerical Studies

In Section 2, we present the proposed method in detail. In order to actually investigate the performance of
the procedure, in this section, we carry out some numerical simulations to illustrate the performance of our
proposed method. We generated 100 Monte Carlo random samples of size n = 200, 500, 800 from model (1),
where X ∼ U(0, 1) and ε ∼ N(0, σ2). We considered three sets of σ = 0.1 and 0.2 to examine the performance
for different levels of signal-to-noise ratio. The following regression is considered:

g(u) =


0, 0 ≤ u ≤ 0.3;

3u2 + 0.93, 0.3 ≤ u ≤ 0.7;

4u2 + 1.24, 0.7 ≤ u ≤ 1.

It is clear that g(u) has two jumps at u = 0.3 and u = 0.7 with jump magnitudes 1.2 and 0.8. The left panel of
Fig. 1 shows the real curves of this function.
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Fig. 1. The left panel shows real curve of the case for noparametric function. The right panel
shows scatter plot of simulated data when n = 200, σ = 0.1, and MR=25%

The missing data X was assumed to be missing at random and the selection probabilities are specified as the
logistic regression model

π(y) =
eα0+α1y

1 + eα0+α1y
.

21



Zhang; Asian Res. J. Math., vol. 21, no. 1, pp. 9-34, 2025; Article no.ARJOM.129329

Here we consider three missing rates (MR) by adjusting value α0 and α1. In particular, we take (α0, α1) as
(1, 3), (1, 0.03) and (−0.5, 0.5), respectively, leading to approximately π1 = 10% (low proportion), π2 = 25%
and π3 = 40% (high proportion of missing) of the data missing. The right panel of Fig. 1 shows scatter plot of
simulated data when n = 200, σ = 0.1, and MR=25%.

In the simulation, the kernel function K used in any estimation is chosen to be the standard Gaussian density.
The bandwidth selection is introduced in Subsection 2.4. To show the estimation efficiency of the inverse
probability weighting (IPW-JP) method, we compared it with the direct elimination (DE-JP) and oracle (O-JP)
method. For the direct elimination method, the data with deleting missing data is used. For the oracle method,
all of the data (Xi, Yi), i = 1, . . . , n with no missing data are used. For comparison, we also list the results of
above three procedures for local linear regression by directly g(·) is a continuous function, denoted by IPW-LL,
DE-LL and O-LL. To evaluate results of curve fitting, we compute the root mean squared errors (RMSE), which
is given by

RMSE =

{
1

n

n∑
i=1

[ĝ(xi)− g(xi)]
2

}1/2

where {xi, i = 1, . . . , n} are equidistant grid points in [0, 1].

For MR=10%, 40%, Fig. 2 depict the true function and its estimated versions using the IPW-JP and the DE-JP
estimators at noise level = 0.1 with sample size n = 200 based on R = 100 simulations, respectively. In each
plot, the true regression function is presented by a black solid curve, a blue dotted curve and a red dashed curve
depict the median of R = 100 replicated fits of the IPW-JP and DE-JP estimators, respectively. From Fig. 2, it
can be seen that for both the methods, the curve fitting is less effective when MR is taken as 40% as compared
to when MR is taken as 10%. Moreover, the fitted curves by IPW-JP and DE-JP methods are resonably close
to the true curve, which indicates that two methods performs well in this case. For further comparison, below
we calculated the RMSE of the various methods.

Table 1 presents mean and standard deviation of the RMSEs based on the 100 replications with all methods
described in the preceding paragraph. From the table, one can have the following conclusions. (i) As σ increases,
the RMSE values for the six methods decreases. Meanwhile, the difference between the RMSE values of the two
methods O-JP and O-LL (i.e. data fully observed) becomes smaller as σ increases, implying that σ has a greater
influence on jump-preserving. (ii) When σ and missing rate πi are fixed, the RMSE values decrease as n increase,
which means consistency of our method. (iii) When the data is missing, the RMSE values increases with the
increase of πi for the four methods IPW-JP, DE-JP, IPW-LL and DE-LL. Moreover, when n is small and πi is
large, the performance of IPW-JP is a little worse than the performance of DE-JP, which may be caused by too
much missing data so that less information is available. (iv) In comparison, generally, our proposed IPW-JP
method is superior to other methods.

Next we consider the accuracy of the detected jump points, i.e. their number and locations. Let Ŝ = {ŝ1, . . . , ŝĴ}
and S = {s1, . . . , sj} denote the sets of detected jump points and true jump points, respectively. To examine
how close the estimated jumps are to the true jumps, a resonable measure is the following Hausdorff distance:

dH(Ŝ, S) = max

(
max
u∈Ŝ

min
v∈S

|u− v|,max
v∈S

min
u∈Ŝ

|u− v|
)
.

The smaller the value of dH(Ŝ, S), the closer Ŝ is to S. When σ = 0.1, the average values of detected jump
points and the average Hausdorff distances for various methods, computed based on 100 replicates, are reported
in Table 2. Obviously, when n is large or the missing rate is small, the number of jump points obtained by
proposed method is closer to the true number 2, and the Hausdorff distance between S and Ŝ is also smaller.
Moreover, as in Table 1, the DE-JP method is not as effective as the IPW-JP method in terms of he number of
jump points and the Hausdorff distance.
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Fig. 2. Plots of fitted curves for different MR when n = 200 and σ = 0.1 based on R = 100
repetitions. Left panel: MR=10%; Right panel: MR=40%. The true function (black solid curve),
the median of IPW-JP estimator (blue dotted curve) and the median of DE-IPW estimator (red

dashed curve) are depicted

Table 1. The mean of the RMSEs are report based on 100 replications

n σ IPW-JP DE-JP O-JP IPW-LL DE-LL O-LL
200 0.1 π1 0.0921 0.1088 0.0883 0.1082 0.0986 0.0969

π2 0.1217 0.1141 0.0840 0.1144 0.1005 0.0892
π3 0.1443 0.1358 0.0857 0.1359 0.1217 0.1008

0.2 π1 0.1207 0.1333 0.1169 0.1358 0.1196 0.1149
π2 0.1558 0.1355 0.1176 0.1460 0.1269 0.1143
π3 0.1624 0.1462 0.1128 0.1574 0.1375 0.1166

500 0.1 π1 0.0363 0.0610 0.0317 0.0816 0.0666 0.0644
π2 0.0641 0.0717 0.0347 0.0841 0.0756 0.0689
π3 0.0889 0.0909 0.0332 0.0957 0.0816 0.0650

0.2 π1 0.0800 0.0997 0.0702 0.1047 0.0930 0.0877
π2 0.0991 0.1023 0.0661 0.1080 0.0951 0.0880
π3 0.1249 0.1157 0.0655 0.1204 0.1093 0.0877

800 0.1 π1 0.0352 0.0561 0.0317 0.0718 0.0593 0.0579
π2 0.0416 0.0569 0.0287 0.0738 0.0618 0.0571
π3 0.0513 0.0711 0.0261 0.0841 0.0708 0.0568

0.2 π1 0.0616 0.0910 0.0526 0.0940 0.0817 0.0775
π2 0.0659 0.1032 0.0575 0.0964 0.0822 0.0746
π3 0.0790 0.1055 0.0523 0.1052 0.0918 0.0764

4 Conclusion

In this paper, for the estimation of discontinuous nonparametric model with missing covariates at random,
we present a weignted local linear jump-preserving estimator based on the inverse selection probability. This
approach not only can provide a jump-preserving estimation for the completely unknown regression function,
but also can accommodate instances of missing data on response. The proposed estimator for the discontinuous
function is shown to be oracally efficient in the sense that using root-n consistent selection probability estimates
is as efficient as that when the selection probabilities are known as a prior. The asymptotic properties of our
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Table 2. Average of the number of jump detected and Hausdorff distances are report based on
100 replications when σ = 0.1

IPW-JP DE-JP O-JP
n No dH No dH No dH
200 π1 1.96 0.0406 2.53 0.0983 1.96 0.0386

π2 1.74 0.1956 2.67 0.1290 1.98 0.0331
π3 1.61 0.2100 2.43 0.1107 1.94 0.0329

500 π1 1.97 0.0150 2.23 0.0807 1.97 0.0143
π2 1.92 0.0866 2.30 0.0896 2.00 0.0132
π3 1.89 0.0822 2.22 0.0878 1.99 0.0100

800 π1 2.03 0.0100 2.16 0.0566 2.02 0.0040
π2 1.93 0.0683 2.08 0.0890 2.00 0.0098
π3 2.10 0.1010 1.86 0.1459 2.03 0.0097

estimator can be established through under some mild conditions. Numerical studies indicate that the prodedure
works well in applications.

However, the following issues related to this topic need further investigation. Firstly, only fully observed cases
contribute to the proposed estimator, the information of partly observed cases is not used in regression (but it is
used in estimating π). This leads to a loss of efficiency. Secondly, we assume that no jumps exist in [0, τh) and
(1− τh, 1]. This condition can always be satisfied when the sample size is large. When the sample size is small,
however, this condition may not be true in some cases, estimation of g(x) in the boundary region is still an open
problem. Finally, the selection of procedure parameters is uniform throughout the entire design interval, which
may not be ideal for certain applications. Further investigation and analysis are required for selecting variable
procedure parameters.
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Appendix

In this section, we provide proofs for Theorems 1 and 2. Firstly, a lemma is introduced, it will be used in the
proofs of the Theorems.

Proof of Theorem 1

Proof. (i). Suppose x ∈ D1, by Taylor’s expansion, it followws that

g(Xi) = g(x) + g′(x)(Xi − x) +
1

2
g′′(x)(Xi − x)2 + o(h2),

where Xi ∈ [x− τh, x). Therefore, âd(x) can be writen as

âd(x) =

n∑
i=1

δi
πi

(g(Xi) + εi)Kd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

= g(x) +
1

2
g′′(x)

S2
2,d − S1,dS3,d

S0,dS2,d − S2
1,d

+

n∑
i=1

δi
πi

εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

+ o(h2)

≜ g(x) +A1 +A2 + o(h2).

(10)

Furthermore, for Sj,d, from lemma 3 of Li et al. (2021), it can be deduced that

1

nhj+1
Sj,d = fX(x)µj,d + op(1). (11)

which imply that

A1 =
1

2
h2g′′(x)

µ2
2,d − µ1,dµ3,d

µ0,dµ2,d − µ2
1,d

+ op(1). (12)

For A2, notice that

E(A2) = nE

[
δi
πi

εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

]

= nE

[
E

{
δi
πi

εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

∣∣∣∣δi
}]

= nE

[
1

πi
εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

∣∣∣∣δi = 1

]
P (δi = 1)

= 0,

(13)

which imply that

E(âd(x)) = g(x) +
1

2
h2g′′(x)

µ2
2,d − µ1,dµ3,d

µ0,dµ2,d − µ2
1,d

+ o(h2).
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Clearly, the bias of âd(x) is

bias(âd(x)) =
1

2
h2g′′(x)

µ2
2,d − µ1,dµ3,d

µ0,dµ2,d − µ2
1,d

+ o(h2). (14)

Next, we calculate the asymptotic variance of the estimator. According to (12) and (13), one has

Var(âd(x)) = Var[g(x) +A1 +A2 + o(h2)]

= Var(A1) + Var(A2) + Cov(A1, A2) + o(h2).

It is easy to see that Var(A1) = o(1) and Cov(A1, A2) = o(1). For Var(A2), we have the following expression

Var(A2) = Var

[
n∑

i=1

δi
πi

εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

]

= E

[
n∑

i=1

δi
πi

εiKd

(
Xi − x

h

)
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

]2

= nE

[
δ2i
π2
i

ε2iK
2
d

(
Xi − x

h

)(
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

)2]

= nE

[
E

{
δ2i
π2
i

ε2iK
2
d

(
Xi − x

h

)(
S2,d − S1,d(Xi − x)

S0,dS2,d − S2
1,d

)2 ∣∣∣∣δi
}]

= nE

[
1

π2
1

ε21K
2
d

(
X1 − x

h

)(
S2,d − S1,d(X1 − x)

S0,dS2,d − S2
1,d

)2 ∣∣∣∣δ1 = 1

]
P (δ1 = 1)

= nP (δ1 = 1)

∫∫
1

π2(g(z) + ε)
ε2K2

d

(z − x

h

)(S2,d − S1,d(z − x)

S0,dS2,d − S2
1,d

)2

fX,ε|δ=1(z, ε)dzdε

= nhP (δ1 = 1)

∫∫
1

π2(g(x+ th) + ε)
ε2K2

d (t)

(
S2,d − S1,dth

S0,dS2,d − S2
1,d

)2

fX,ε|δ=1(x+ th, ε)dtdε

=
1

nhf2
X(x)

P (δ1 = 1)

∫
K2

d(t)

(
µ2,d − µ1,dt

µ0,dµ2,d − µ2
1,d

)2

dt

∫
1

π2(g(x) + ε)
ε2fX,ε|δ=1(x, ε)dε(1 + o(1))

=
1

nhf2
X(x)

P (δ1 = 1)VdS(x)(1 + o(1)).

Therefore, one can obtain

Var(âd(x)) =
1

nhf2
X(x)

P (δ1 = 1)VdS(x)(1 + o(1)).

Hence, it together with (14), we can obtain the result (i) of Theorem 1

(ii). Suppose x ∈ D2,l, let x = sj + uh, u ∈ (−τ, 0). The left estimator of g(·) has the same bias and
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variances shown before at any point x ∈ D2,l. Meanwhile, the right estimator âr(x) is given by

âr(x) =

n∑
i=1

δi
πi

YiKr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

=
∑

Xi<sj

δi
πi

(g(Xi))Kr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

(g(Xi) + dj)Kr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+

n∑
i=1

δi
πi

εiKr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

=
∑

Xi<sj

δi
πi

(g(sj−) + op(1))Kr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

(g(sj−) + dj + op(1))Kr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+ op(1)

=(g(sj−) + op(1))

n∑
i=1

δi
πi

Kr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

djKr

(
Xi − x

h

)
S2,r − S1,r(Xi − x)

S0,rS2,r − S2
1,r

+ op(1)

=g(sj−) + dj

∫ τ

|u|
Kr(t)

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt+ op(1).

(15)

So the bias of âr(x) is

bias(âr(x)) = dj

∫ τ

|u|
Kr(t)

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt+ o(1).

Similarly, the expression of the centered estimator (âc(x)) can be obtained by using the centered kernel and
applying that µ0,c = 1 and µ1,c = 0.

(iii). The third part of Theorem 1 can be proved in the same way as (ii).

□

Proof of Theorem 2

Proof. From the definition of WRMS, it follows that

WRMSd(x) =

1
nh

∑n
i=1

δi
πi
[Yi − âd(x)− b̂d(x)(Xi − x)]2Kd

(
Xi−X

h

)
1
nh

∑n
i=1

δi
πi
Kd

(
Xi−X

h

) . (16)

According to (11), the denominator of (16) can be written as

1

nh

n∑
i=1

δi
πi

Kd

(
Xi − x

h

)
= µ0,dfX(x) + op(1). (17)
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For the numerator of (16), one has

1

nh

n∑
i=1

δi
πi

[Yi − âd(x)− b̂d(x)(Xi − x)]2Kd

(
Xi − x

h

)

=
1

nh

n∑
i=1

δi
πi

[g(Xi) + εi − âd(x)− b̂d(x)(Xi − x)]2Kd

(
Xi − x

h

)

=
1

nh

n∑
i=1

δi
πi

[g(Xi)− âd(x)− b̂d(x)(Xi − x)]2Kd

(
Xi − x

h

)
+

1

nh

n∑
i=1

δi
πi

ε2iKd

(
Xi − x

h

)

+
2

nh

n∑
i=1

δi
πi

[g(Xi)− âd(x)− b̂d(x)(Xi − x)]εiKd

(
Xi − x

h

)
≜ I1 + I2 + I3.

(18)

(i) Suppose u ∈ D1, using the similar derivations to those in the proof of Theorem 1, it can be obtained
that

I2 = σ2µ0,dfX(x) + op(1).

For I3, applying the Taylor’s expansion, it is clear

I3 = I31 + I32 + I33,

where

I31 =
2

nh
(g(x)− âd(x))

n∑
i=1

δi
πi

εiKd

(
Xi − x

h

)
,

I32 =
2

nh
(g′(x)− b̂d(x))

n∑
i=1

δi
πi

εiKd

(
Xi − x

h

)
(Xi − x),

I33 =
2

nh
o(h)

n∑
i=1

δi
πi

εiKd

(
Xi − x

h

)
.

Furthermore, from Theorem 2.8 and Theorem 2.9 of Li and Racine (2007), one can get âd(x) − g(x) =

Op

(
h2 + n(nh)−1/2

)
= op(1) and b̂d(x) − g′(x) = Op

(
h2 + (nh3)−1/2

)
= op(h

−1), we get I31 = op(1),

I32 = op(1) and I33 = op(1). It imply that

I3 = op(1).

Similarly, it can be proved

I1 = op(1).

It is easily seen from (17) and (18) that

WRMSd(x) = σ2 + op(1).

(ii) Suppose x ∈ D2,l, let x = sj + uh, u ∈ (−τ, 0). WRMSl(x) can be proved in the same way as (i). For
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WRMSr(u), the right sided estimator of the first-order derivation of g(·) is given by

b̂r(x) =

n∑
i=1

δi
πi

YiKr

(
Xi −X

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

=
∑

Xi<sj

δi
πi

(g(Xi))Kr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

(g(Xi))Kr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+

n∑
i=1

δi
πi

εiKr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

=
∑

Xi<sj

δi
πi

(g(sj−) + op(1))Kr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

(g(sj−) + dj + op(1))Kr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+ op(h
−1)

=(g(sj−) + op(1)

n∑
i=1

δi
πi

Kr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+
∑

Xi≥sj

δi
πi

djKr

(
Xi − x

h

)
S0,r(Xi − x)− S1,r

S0,rS2,r − S2
1,r

+ op(h
−1)

=
1

h
dj

∫ τ

|u|
Kr(t)

µ0,rt− µ1,r

µ0,rµ2,r − µ2
1,r

dt+ op(h
−1).

(19)

Therefore, using (15) and (19), the expression of I1 for the right-sided estimator is

I1 =
1

nh

n∑
i=1

δi
πi

[g(Xi)− âr(x)− b̂r(x)(Xi − x)]2Kr

(
Xi − x

h

)
=

1

nh

∑
Xi≥sj

δi
πi

[
g(Xi)− g(sj−)− dj

∫ τ

−u

Kr(t)
µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt

− 1

h
dj

∫ τ

−u

µ0,rt− µ1,r

µ0,rµ2,r − µ2
1,r

Kr(t)dt(Xi − x) + o(1)

]2
Kr

(
Xi − x

h

)
+

1

nh

∑
Xi<sj

δi
πi

[
g(Xi)− g(sj−)− dj

∫ τ

−u

Kr(t)
µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

dt

− 1

h
dq

∫ τ

−u

µ0,rt− µ1,r

µ0,rµ2,r − µ2
1,r

Kr(t)dt(Xi − x) + o(1)

]2
Kr

(
Xi − x

h

)
+ op(1)

=fX(x)

∫ τ

−u

[
dj

∫ −u

−τ

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

Kr(t)dt− zdj

∫ τ

−u

µ0,rt− µ1,r

µ0,rµ2,r − µ2
1,r

Kr(t)dt

]2
Kr(z)dz

+ fX(x)

∫ −u

−τ

[
dj

∫ τ

−u

µ2,r − µ1,rt

µ0,rµ2,r − µ2
1,r

Kr(t)dt+ zdj

∫ τ

−u

µ0,rt− µ1,r

µ0,rµ2,r − µ2
1,r

Kr(t)dt

]2
Kr(z)dz(1 + op(1))

=fX(x)djC
2
u,r + op(1).

Furthermore, similar to the proof of (i), I2 = σ2µ0,rf(x)+op(1) and I3 = op(1). Thus (ii) of Theorem 2 is proved.

(iii) Suppose x ∈ D2,r, the third part can be obtained in the same way. □
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Proof of Theorem 3

Proof. For x ∈ D1, similar to the proof of Theorem 1, by the central limit theorem, we have

√
nh

[
âd(x)− g(x)− 1

2
h2g′′(x)Bd

]
D−→ N

(
0, f−2

X (x)P (δ1 = 1)S(x)Vd

)
. (20)

In addition, it follows from Theorem 1 that for the left side estimator âl(x), (20) holds for x ∈ D1 ∪ D2,l and
for the right side estimator âr(x), (20) holds for x ∈ D1 ∪D2,r.

For any x ∈ [0, 1], the resulting estimator of g(·) can be rewritten as

ĝ(x) = âc(x)I(D1(x)) + âl(x)I(D2,l(x)) + âr(x)I(D2,r(x)).

Note that D1, D2,l and D2,r are mutually exclusive and I(D1(x)) + I(D2,l(x)) + I(D2,r(x)) = 1.

For any x ∈ D1, it can be seen that diff(x) → 0 and λ → 0 as n → ∞ from Theorem 2. It means that when
x ∈ D1, ĝ(x) = âc(x) a.s..

For any x ∈ D2,l, that is, u = sj + uh, u ∈ (−τ, 0). From the second part of Theorem 2,

diff(x) = max
{
d2jC

2
u,c +Rc,2(x)−Rl,2(x), d

2
j (C

2
u,c − C2

u,r) +Rc,2(x)−Rr,2(x)
}
.

Since

lim
n→∞

[d2jC
2
u,c +Rc,2(x)−Rl,2(x)] = d2jC

2
u,c,

and

lim
n→∞

[d2j (C
2
u,c − C2

u,r) +Rc,2(x)−Rr,2(x)] = d2j (C
2
u,c − C2

u,r),

which implies that

lim
n→∞

diff(x) = max
{
d2jC

2
u,c, d

2
j (C

2
u,c − C2

u,r)
}
= d2jC

2
u,c,

and by 0 < λ < d2jC
2
u,c, so I(D1(x)) = 0 as n → ∞. Note that

WRMSr(x)−WRMSl(x) = d2jC
2
u,r +Rr,2(x)−Rl,2(x) → d2jC

2
u,r > 0,

so I(D2,r(x)) = 0 and I(D2,l(x)) = 1 a.s., i.e. ĝ(x) = âl(x).

For x ∈ D2,r, similarly, we have ĝ(x) = âr(x).

It is clear that âc(x), âl(x), âr(x) are asymptotically normal in D1, D2,l and D2,r respectively, thus Theorem
3 is proved.

□

Proof of Theorem 4

Proof. To prove this theorem, we first prove prove the following equations

sup
x∈[0,1]

|âd(x)− âd(x, π̂)| = Op(n
−1/2). (21)

Similar to the proof of Theorem 3, when x ∈ D1, ĝ(x) = âc(x) and ĝ(x, π̂) = âc(x, π̂). Thus (21) holds for two
center estimators âc(x) and âc(x, π̂). The proof is presented below.

Since π(y) is assumed to follow a parametric model π(y, α) and has bounded first order partial derivative with
respect to α, it is easy to show that supy∈R|π(y)− π̂(y)| = supy∈R|π(y, α)− π̂( ˆy, α)| = Op(n

−1/2), where α̂ is a
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root-n consistent estimator of α. This together with (11) implies that there exists some constant M > 0 such that

sup
x∈[0,1]

∣∣∣∣ 1nh (Sj,c − Ŝj,c)

∣∣∣∣ = sup
x∈[0,1]

∣∣∣∣∣ 1nh
n∑

i=1

(
δi
πi

− δi
π̂i

)
Kc

(
Xi − x

h

)
(Xi − x)j

∣∣∣∣∣
≤ dhj sup

1≤i≤n
|πi − π̂i| sup

x∈[0,1]

∣∣∣∣ 1nhS0,c

∣∣∣∣
= Op(n

−1/2).

(22)

Next, from lemma 5 of Li et al. (2021), one has

sup
x∈[0,1]

∣∣∣Ml,c(x)− M̂l,c(x)
∣∣∣ = Op(n

−1/2), l = 1, 2, (23)

where

Ml,c(x) =
1

nh

n∑
i=1

δi
πi

Kc

(
Xi − x

h

)
(Xi − x)l

(
1

2
g′′(x)(Xi − x)2 + εi + o(h2)

)
,

M̂l,c(x) =
1

nh

n∑
i=1

δi
π̂i

Kc

(
Xi − x

h

)
(Xi − x)l

(
1

2
g′′(x)(Xi − x)2 + εi + o(h2)

)
.

Meanwhile, from (10), one can obtain that

âc(x)− g(x) = e⊤0

(
(nh)−1S0,c (nh)−1S1,c

(nh)−1S1,c (nh)−1S2,c

)−1(
M0,c

M1,c

)
,

where e0 = (1, 0)⊤. Similarly, for âd(x, π̂),

âc(x, π̂)− g(x) = e⊤0

(
(nh)−1Ŝ0,c (nh)−1Ŝ1,c

(nh)−1Ŝ1,c (nh)−1Ŝ2,c

)−1(
M̂0,c

M̂1,c

)
Therefore, one has

âc(x)− âc(x, π̂) =e⊤0

(
(nh)−1S0,c (nh)−1S1,c

(nh)−1S1,c (nh)−1S2,c

)−1(
M0,c

M1,c

)
− e⊤0

(
(nh)−1Ŝ0,c (nh)−1Ŝ1,c

(nh)−1Ŝ1,c (nh)−1Ŝ2,c

)−1(
M̂0,c

M̂1,c

)
By (22) and (23), it can be seen that

sup
x∈[0,1]

|âc(x)− âc(x, π̂)| = Op(n
−1/2).

Similarly, when x ∈ D2,l, ĝ(x) = âl(x) and ĝ(x, π̂) = âl(x, π̂). Thus (21) holds for two left estimators âl(x) and
âl(x, π̂). When x ∈ D2,r, (21) holds for two left estimators âr(x) and âr(x, π̂).

When d = c, l, r, it is clear that (21) holds in D1, D2,l and D2,r respectively, thus Theorem 4 is proved. □
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