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ABSTRACT 
 

Selenium biofortification aims to increase selenium accumulation or bioavailability in edible crops, 
tackling the global issue of hidden hunger for essential micronutrients. This review examines the 
vital role of selenium in human health, its interactions within soil-crop systems, and its potential to 
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alleviate abiotic stresses in plants. By utilizing selenorhizobacteria as biotechnological tools, 
selenium biofortification presents an innovative method for enhancing crop nutrition and quality. 
The review emphasizes key mechanisms involved in selenium uptake, its function in activating 
plant antioxidant systems, and its dual role as both a beneficial nutrient and a prooxidant. 
Furthermore, it explores microbial contributions to selenium mobility and bioavailability, offering 
practical strategies to bolster crop resilience and productivity. This comprehensive analysis 
highlights the importance of selenium biofortification in fostering sustainable agriculture and 
improving global health outcomes. 
 

Graphical Abstract 
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1. INTRODUCTION  
                    
Biofortification is a process aimed to improve the 
nutritional value of crops by increasing the 
concentration of essential micronutrients in 
edible portions without sacrificing agronomic 
characteristics such as yield, or resistance to 
pests and drought. biofortification through 
nanotechnology, where nano materials are 
applied to plants alone or as a component of 
conventional fertilizers (e.g. Zn, Fe or graphene 
nanoparticles), and green technologies, which 
involve the use of microorganisms to improve the 
nutrient status of the soil and the accessibility of 

nutrients to plants (Dhaliwal et al., 2022). The 
appropriate and healthy existence of humans, 
animals, archaea, and certain other microbes 
depends on the mineral micronutrient selenium. 
(El-Ramady et al., 2014).  
 
The distribution of selenium varies around the 
world since it is found in the lithosphere layer of 
the earth's crust, which includes water, soil,             
and open areas (Hasanuzzaman et al., 2020). 
The primary source of selenium's role in 
functioning is its presence in selenium-containing 
amino acids such selenomethionine (SeMet) and 
selenocysteine (SeCys). The total selenium 
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concentration of food sources, including chemical 
forms (speciation), is crucial because it 
influences the nutritional value and bioavailability 
of selenium (Kikkert et al., 2013). Benefits 
derived from biofortifying crops with 
micronutrients, such as antioxidant qualities that 
can promote plant growth and protect plants from 
many forms of abiotic stress. Although selenium 
is a necessary component of human and animal 
cells, its significance for plants is still being 
studied (Jozwiak et al., 2019).  
 
Microorganisms are a novel biotechnological 
substitute for selenium biofortification since they 
are crucial to the transformations and availability 
of selenium. In addition to increasing plant 
productivity, fertilizing crops with selenium may 
also improve their nutritional value. The 
application of conventional agronomic selenium 
biofortification shows great promise in combating 
hidden hunger. (Haug et al., 2007).  
 
The amount of selenium applied has a significant 
impact on its toxicity or benefits (Gupta et al., 
2020). Se can activate plants' antioxidant 
systems at low concentrations, but at large 
concentrations, it functions as a prooxidant 
(Nawaz et al., 2015). Se has a number of 
beneficial impacts on plants, including boosting 
plant growth, reducing UV-induced oxidative 
damage, enhancing chlorophyll recovery from 
light stress, boosting senescing plants' ability to 
combat oxidative damage, and controlling 
drought-stricken plants' water status (Yao et al., 
2009). Furthermore, Se has the ability to 
enhance plant growth and development as well 
as boost the plants' ability to withstand 
environmental stressors and produce 
antioxidants (Iqbal et al., 2015), hence 
contributing to increased grain yields 
(Hasanuzzaman et al., 2014). Research has 
shown that selenium (Se) can enhance plant 
development by fortifying stress tolerance 
mechanisms like antioxidant and secondary 
metabolite metabolism. (Kamran et al., 2020). 
 

2. IMPORTANCE OF BIOFORTIFICATION 
BY SELENIUM FOR ABIOTIC STRESS 
MANAGEMENT USING EFFECTIVE 
MICROORGANISMS 

 

2.1 Abiotic Stress in Agriculture 
 

Abiotic stress, including drought, heat, salinity, 
and heavy metal contamination, is a major 
constraint on agricultural productivity. These 
stressors significantly affect plant growth, yield, 

and quality. The global agriculture sector is 
facing an increasing number of challenges due to 
climate change, which exacerbates the 
frequency and severity of abiotic stress 
conditions (Wang et al., 2020). The manuscript 
offers insights into how selenium, an essential 
micronutrient, can enhance plant tolerance to 
abiotic stress by acting as an antioxidant and 
promoting stress-related protein synthesis in 
plants (Tian et al., 2021). The potential of 
selenium to alleviate oxidative stress in plants 
makes it a promising candidate for improving 
crop resilience (Li et al., 2022). 
 

2.2 Selenium in Biofortification 
 

Selenium is an essential micronutrient for both 
plants and humans, with significant health 
benefits, including antioxidant properties that 
help mitigate oxidative damage. Biofortification, 
which refers to the process of increasing the 
nutrient content of crops, is an important strategy 
for addressing micronutrient deficiencies in 
human diets. Selenium deficiency is a public 
health concern in many regions of the world, 
leading to conditions such as Keshan disease 
and weakened immune systems (Oldfield, 2022). 
Biofortifying crops with selenium can provide a 
sustainable way to improve both agricultural 
productivity and human nutrition. This 
manuscript's exploration of selenium 
biofortification is therefore crucial in the context 
of both agricultural science and public health. 
 

Recent studies have shown that biofortifying 
cereals, vegetables, and other staple crops with 
selenium improves their nutritional value and 
addresses selenium deficiencies in human 
populations (McGrath et al., 2020). This 
manuscript contributes to this growing body of 
knowledge, highlighting the potential of selenium 
to improve both the nutritional quality of crops 
and their ability to cope with environmental 
stress. 
 

2.3 Role of Effective Microorganisms 
(EM) in Stress Management 

 

Effective microorganisms (EM) refer to beneficial 
microbial consortia that can promote plant 
growth, enhance nutrient uptake, and improve 
stress tolerance. These microorganisms can aid 
in the bioremediation of contaminated soils, 
improve soil health, and increase the 
bioavailability of essential nutrients, including 
selenium (Zhang et al., 2021). The manuscript 
highlights the potential of combining selenium 
biofortification with EM, proposing that this 
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synergy could enhance selenium uptake by 
plants and improve their resistance to abiotic 
stress. 
 

Research has shown that EM can help plants 
withstand salinity stress (Sharma et al., 2022), 
drought (Shah et al., 2021), and heavy metal 
contamination (Chakraborty et al., 2020). 
Furthermore, EM can promote the transformation 
of selenium into bioavailable forms, facilitating its 
uptake by plants (Rizvi et al., 2020). The 
manuscript’s focus on this combined approach is 
significant for advancing sustainable agricultural 
practices. 
 

2.4 Sustainability and Environmental 
Impact 

 

Selenium biofortification combined with EM offers 
a low-cost, environmentally friendly alternative to 
conventional agricultural practices that often rely 
on chemical fertilizers and pesticides. These 
traditional methods can lead to soil degradation, 
water pollution, and other ecological challenges 
(Singh et al., 2020). The use of biofortification 
and EM could mitigate these environmental 
issues while promoting sustainable agriculture. 
Recent studies have underscored the importance 
of integrating biofortification strategies with 
microbial approaches to reduce the 
environmental impact of farming while increasing 
crop yields and quality (Vargas et al., 2023). 
 

By reducing dependency on chemical inputs and 
improving soil health through microbial activity, 
this approach aligns with the principles of 
sustainable and regenerative agriculture, which 
are vital for ensuring long-term food security. 
 

2.5 Interdisciplinary Approach and 
Future Research 

 

The manuscript presents an interdisciplinary 
approach that integrates plant biology, 
microbiology, environmental science, and 
agricultural biotechnology. This cross-disciplinary 
perspective is important for addressing the 
complex challenges faced by modern agriculture. 
The findings could inspire future research on the 
genetic, molecular, and ecological aspects of 
selenium uptake and the role of EM in 
biofortification. 
 

Microbial Interactions and Selenium Uptake: 
Future studies could focus on identifying specific 
microbial species that enhance selenium uptake 
in plants and investigating their mechanisms of 
action (Zhang et al., 2022). 

Genetic Engineering for Enhanced 
Biofortification: Advances in plant genomics 
and genetic engineering could further improve 
the efficiency of selenium biofortification and 
stress tolerance (Sharma et al., 2021). 
 

2.6 Global Health Implications 
 
In addition to improving crop yield, selenium 
biofortification addresses global health concerns 
by combating selenium deficiency. Selenium 
plays a crucial role in immune function, thyroid 
hormone metabolism, and antioxidant defense. 
The manuscript's focus on biofortification as a 
solution to selenium deficiency is highly relevant 
for addressing public health issues, particularly in 
regions where soil selenium levels are low. 
 
Health Benefits of Selenium Biofortification: 
Studies have demonstrated that selenium 
biofortified crops can significantly improve human 
selenium intake and reduce the incidence of 
selenium-related health problems (Sorensen et 
al., 2021). This manuscript’s contribution to the 
biofortification field has the potential to influence 
policies aimed at improving global nutrition. This 
review will therefore attempt to spread more light 
to find out the ways for biofortification of crops to 
increase their tolerance towards drought and can 
produce reliable yield. 
 

3. SIGNIFICANCE OF SELENIUM IN 
HUMAN HEALTH 

 
Selenium is a trace element that is part of 
selenocysteine, an enzyme active site 
component, and is therefore required in trace 
amounts by both humans and animals. Se takes 
responsibility for a variety of metabolic activities 
in both animal and human systems. Se activates 
immune cells such natural killer (NK), cytotoxic T, 
and helper T in the immunological system 
(Razaghi et al., 2021).  
 
Selenium has shown various benefits, including 
enhanced growth performance, immune 
functions, and nutritional quality of meats, with 
reduced oxidative stress and inflammation, and 
finally enhanced thyroid health and fertility in 
humans (Mojadadi et al., 2023).  A vital trace 
element, selenium is fundamentally important for 
human health. For both humans and animals, 
selenium is an important mineral with antioxidant 
qualities (Jezek et al., 2012). Selenium 
deficiencies in the human body can result in or 
cause illnesses like Keshan and Kashin-Beck 
disorders (Fairweathe et al., 2011). Additionally, 
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a shortage in selenium is linked to immune 
system enhancement, muscular necrosis, 
hypothyroidism, cardio-cerebrovascular illness, 
male infertility, and an increased prevalence of 
several cancers (Fordyce et al., 2013). Se 
deficiency is thought to be associated with 
illnesses including acquired immune deficiency 
syndrome (AIDS) and coronavirus disease 2019 
(COVID-19) (Zhang et al., 2020). A vital 
component of selenoproteins, selenium is 
involved in numerous biological processes with 
antioxidant qualities, including defense against 
free radical damage, thyroid hormone production, 
DNA synthesis, fertility and reproduction, HIV 
treatment, and defense against toxic heavy 
metals (Fairweather-Tait et al., 2011). 
 
This metalloid's predicted significance stems 
from its association with selenoenzymes, 
including glutathione peroxidase, thioredoxin 
reductases, and proteins whose roles are unclear 
but which contribute to preserving the redox 
potential of cells (Ramos et al., 2010), as well as 
additional bodily structure and metabolic 
processes. A diet deficient in selenium can have 
a detrimental effect on human health by 
increasing the risk of heart disease, 
hypothyroidism, lower male fertility, impaired 
immune systems, and increased susceptibility to 
infections and malignancies (Hatfield et al., 
2014). Numerous studies have demonstrated the 
protective effects of selenium compounds, such 
as SeMet, in the human diet against 
malignancies of the breast, prostate, lung, 
bladder, and liver (Fairweather-Tait et al., 2011). 
Thus, one practical way to lessen the issue of 
selenium insufficiency in humans and animals is 
to increase the content of selenium in food crops.  
 
An approximate adequate daily intake of 
selenium for humans is 50–60 μg, however 
hazardous levels of selenium ingestion               
range from 350–700 μg (Badmaev et al., 2018).  
 
It is possible for many microbes to transform 
inorganic selenite into organic forms, which are 
thought to be more effective and safe dietary 
sources of selenium. Additionally, selenium can 
bind to different polysaccharides and proteins to 
form complexes. The prevention of cancer and 
cardiovascular disease is one of the main health 
benefits of selenium supplementation or 
ingestion in humans, even at low dosages. 
Significant increases in the amount of starch, 
reducing sugars, sulfur-containing amino acids, 
and other components are involved in selenium 
augmentation in cereals. 

The percentage of people suffering from non-
communicable, dietary-dependent illnesses such 
obesity, hypertension, hyperinsulinemia, insulin 
resistance, and dyslipidemia is continuously 
rising (World health statistics, 2020). However, 
consuming too much selenium can also lead to 
the development of hypotension, tachycardia, 
tremor, muscle contractions, hair loss, and 
lesions on the skin and nails. Therefore, it's 
important to maintain a balanced daily intake of 
Se (Hossain et al., 2021). The amount of Se that 
is advised to be consumed each day varies 
based on factors like age, gender, stage of 
pregnancy, length of lactation, region, and food. 
In addition, the WHO's recommended daily 
intake of selenium (Se) is trending upward (Table 
1). The body mostly absorbs selenium through 
diet. Products derived from plants and animals 
contain the trace element. 
 

4. STATUS OF SELENIUM IN SOIL AND 
CROP  

 
The physical, chemical, and biological 
characteristics of the soil have a significant 
impact on the effectiveness of selenium-treated 
crops in terms of yield (Zhao et al., 2005). The 
majority of soils have extremely low 
bioavailability of selenium content, ranging from 
0.01 to 2 mg/kg on average (0.4 mg/kg); 
nevertheless, in select seleniferous locations, 
greater amounts of up to 1200 mg/kg have been 
reported (Fordyce et al., 2005). Selenium 
concentrations in vegetation on most soils are 
less than 1 mg/kg. Most plant species on 
seleniferous soils have a selenium content of 1–
10 mg/kg, while plants that are hyper 
accumulators of selenium, such as Astragalus 
and Stanleya genera, can collect 1000–15000 
mg/kg at low soil concentrations. 
 

4.1 Distribution of Se Worldwide  
 
In India, the soil of Gujarat has a very low 
selenium status and is regarded as deficient in 
the element; the total amount of selenium in the 
soil ranges from 0.142 to 0.678 mg/kg, with an 
average of 0.375 mg/kg (Patel et al., 1970). In 
agroecosystems, selenium can be present in 
both inorganic and organic forms. Elemental 
selenium, selenide, selenite, and selenate are 
the four oxidation states of inorganic selenium. 
Uneven distribution of selenium in the soil might 
result in selenium insufficiency. Low quantities of 
plant-available forms of selenium in soil can 
reduce the amount of selenium consumed 
through food due to crops' slow uptake of the 
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mineral (Winkel et al., 2015). Only around 5% of 
the selenium that is added to the soil is used by 
plants. Plant species differ widely in their 
capacity for selenium buildup in their tissues 
(White, 2016). In general, SeO4

2- and SeO3
2-have 

a strong affinity for plants. Conversely, some 
organic forms of selenium, such as 
selenocysteine (Se-Cys) and selenomethionine 
(Se-Met), are employed as active ingredients 
because they have a higher phytoavailability. 
 

The amount of selenium in the soil and the 
concentration of selenium in grown food plants in 
a given area determine the selenium status and 
intake in a given human population. Therefore, 
controlling the amount of Se in plants is a major 
way to manage human intake of Se and its 
status, which is also influenced by soil Se level, 
bioaccumulation of Se, and the effectiveness of 
soil microbes (Stoffaneller and Morse, 2015; 
Winkel et al., 2015). The average selenium 
content of soils worldwide ranges from 0.1 to 0.7 
mg kg−1. Clay soils typically have an average Se 
content of 0.8 to 2 mg kg−1, whereas tropical 
soils have an average Se level of 2-4.5 mg kg−1. 
As a result, clay soils contain more Se than soils 
with coarse minerals. (Hartikainen, 2005). 
Rainfall, organic matter, and soil texture all affect 
the amount of selenium present in the soil (El-
Ramady et al., 2016).  
 
Se content is extremely low in igneous rocks and 
explosive soils. These kinds of soils are found in 
hilly nations like Sweden, Finland, and Scotland. 
Se is abundant in sedimentary rocks. Se is 
typically prevalent in rocks found in the world's 
arid regions. These rocks are linked to the 

detrimental effects of selenium on animals. 
(McNeal and Balistrieri, 1989; Gupta and Gupta, 
2000). By using microorganisms that can 
metabolize inorganic selenium and be used as 
seed inoculants or as biotechnological tools for 
crop nutrition and quality, it may be possible to 
reduce the complexity of selenium behavior in 
plants and soils, particularly in soils that are 
specifically deficient in the mineral. A novel 
biotechnological approach to address the toxicity 
and selenium deficit in some agroecosystems 
could involve combining biofortification and 
bioremediation (Acuna et al., 2013). 
 

The distribution, mobility, and bioavailability of 
selenium in soils are significantly impacted by the 
presence of microbes in the surrounding 
environment. The bioprocesses involved in the 
metabolism of bacteria also affect the relative 
amounts of selenium oxidation states and 
selenium compounds in the atmosphere. For the 
purpose of bioremediation of contaminated soils, 
sediments, industrial effluents, and agricultural 
drainage waters, bacteria have the capacity to 
convert inorganic selenium into elemental forms 
(Dungan et al., 2003). Nearly 80% of the world's 
total Se reserves are distributed across Australia, 
Peru, China, the United States, Chile, Canada, 
New Guinea, Zambia, the Philippines, and Zaire 
(Liu et al., 2011). There are places in about forty 
countries where human selenium intake is 10% 
μg day−1 or even significantly lower, while soil 
selenium concentrations are limited. Conversely, 
Switzerland, New Zealand, Australia, Finland, 
and South Korea are among the nations with  
Se-abundant to Se-limited areas. (Wu et al., 
2015).  

 

 
 

Fig. 1. Map showing the prominent regions having selenium in the world. (Selenium rich areas 
are marked red while selenium deficient are marked blue) 
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Table1. Recommended daily intake levels of Se 
 

Country Men mg/day Women mg/day Pregnancy 
mg/day 

Lactation period 
mg/day 

Maximum 
allowable level 
mg/day 

Toxic dose 
mg/day 

References 

WHO 42 (1996); 34 
(2004); 55 (2019) 

39 (1996); 26 
(2004); 55 (2019) 

57-59 64-71 400 900 Kieliszek et al., 2019 

Russia 70 55 55 55 - - World Health 
Organization; 2017 

United 
Kingdom 

75 60 - - 400 - Kieliszek et al., 2019 

United States 55 55 60 70 200 400 The National Academy 
Press, 2000. 

Europe 60 53 - - 400 - Commission Directive 
2008 

India 55 55 60 70 200 - Alexander et al., 2020 
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Total Se concentration ranged from 0.023 to 4.91 
mg kg-1 in 0–15 cm surface soil and 0.64–515.0 
mg kg-1 in vegetation samples in the northwest 
region of Indian soil (Dhillon et al., 2014). Plants, 
soils, rocks, and groundwater are all parts of the 
agroecosystem that contain selenium. The range 
of selenium amounts in animal diets for both 
adequacy and toxicity is 0.05–0.10 mg kg−1 and 
4.0–5.0 mg kg−1, respectively (Zanetti et al., 
2015). 
 

5. NEED OF SELENIUM FOR ABIOTIC 
STRESS MANAGEMENT IN RAINFED 
RICE CULTIVATION  

 
Rice (Oryza sativa L.) is one of the major food 
crop globally ranked third after wheat and maize 
in terms of production and is the staple food crop 
for nearly two-third of the world’s population 
(Abbade et al., 2021). About 52% of net sown 
area in India falls under rainfed agriculture, 
contributing 46% of food grain production and 
supporting livelihood for 40% of the population in 
the country (NRAA- National rainfed area 
authority, 2020). Because the livelihood of a 
majority of the world's population depends on 
rice, it is vital to investigate how abiotic stress 
influences the variability of rice yields (Song et al., 
2022). Due to unpredictable, insufficient, and 
inconsistent rainfall during the growing season. 
Selenium application with effective 
microorganisms are needed to reduce rice crop 
yield losses in rainfed lowland areas and 
increase overall rice production. It is estimated 
that approximately 90% of global arable land is 
prone to one or more environmental stresses, 
resulting in 70% yield losses in major crops 
(Waqas et al., 2019). Severe droughts witnessed 
in India during 2002, 2003, 2009 and 2010 
caused significant reduction in rice                         
yields particularly in eastern Indian states of 
Jharkhand, Bihar, Uttar Pradesh, Chhattisgarh, 
and Odisha.  
 

6. ROLE OF SOIL MICROBES IN 
MOBILIZATION OF SELENIUM 

 

Enhancing selenium biofortification through crop-
microorganism interactions is the focus of this 
emerging field of study. Plant growth promoting 
bacteria (PGPB) are a diverse group of soil 
bacteria that, when coexisting with a host plant, 
stimulate the host's growth. Nowadays, using 
bacteria that promote plant growth can serve as 
an alternative to conventional techniques for 
improving plants' uptake of micronutrients. (Mora 
et al., 2015).  

It is widely acknowledged that a large range of 
bacterial species exist in the rhizosphere and 
that these species perform vital roles in 
agriculture, including nutrition, plant growth, and 
disease prevention (Hawkesford et al., 2007). 
Similar to this, microbes are crucial to the 
biogeochemical cycle of selenium in the natural 
world (Ike et al., 2000). Selenium is modified 
during bacterial metabolism by a variety of 
processes (oxidation, reduction, or methylation), 
as well as by selenium respiration in bacteria that 
are tolerant of selenium and linked to the 
processes of assimilation and metabolization of 
this metalloid within the cells. This has 
demonstrated a great deal of promise for usage 
in selenium-contaminated sites bioremediation 
and phytoremediation (Ghosh et al., 2008; Tong 
et al., 2014). The amount of accessible EXC-Se 
and SOL-Se in soil and plants was considerably 
enhanced by the selenium-oxidizing bacteria 
Dyella sp. LX-1, Rhodanobacterium sp. LX-100, 
and Agrobacterium sp. T3F4, Concentrations of 
Se (Guo et al., 2024). Excessive levels of heavy 
metals, such Cd, in seleniferous soils need to be 
addressed, despite the fact that microbial 
selenium fortification in crops is an 
environmentally beneficial biotechnology (Jiao et 
al., 2022) 
 
In both aquatic and terrestrial ecosystems, 
specific bacterial species are crucial for                     
the transformation of selenium. Se serves as              
the terminal acceptor for the anaerobes' 
respiration.  
 
Thauera selenatis, which was found in a 
bioreactor containing Se-oxyanion and 
agricultural wastewater in California, and 
Sulfurospirillum barnesii, which was found in 
drainage containing Se, are the first microbes to 
be isolated to use SeO4

2− for such a process 
(Macy et al. 1993; Oremland et al. 1994). While 
SeO4

2− is produced in small quantities, 
autotrophic bacteria like Bacillus megaterium 
typically oxidize Se0 into SeO3

2−. Previous 
investigations into soils and slurries have 
demonstrated that the oxidation process of Se0 
results in the formation of SeO4 2− and SeO3 2−, 
respectively (Dowdle and Oremland 1998). A 
number of other microbial species, such as 
Shewanella, Anaeromyxobacter dehalogenans, 
Desulfitobacterium sp. D. chlororespirans, 
Geobacter sulfurreducens, and Enterobacter 
cloacae etc. were furthermore examined for their 
capacity to reduce, specifically for conversions 
from SeO3 2− & SeO4 2− into Se0, respectively 
(Schilling et al. 2020). 
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6.1 Se-Metabolising Bacteria 
 
6.1.1 Selenate-metabolising bacteria 
 
Bacteria that consume selenium undergo 
reduction of SeO4

2− in two primary stages: first, 
selenium reductases convert SeO4

2− into SeO3
2−, 

and then they further reduce selenite into Se0. 
  

SeO4
  2  + 2e + 2H+ → SeO3 2+ H2O 

SeO3 2 + 4e + 6H+ → Se0 + 3H2O 
 
Microbes such as B. selenatarsenatis and E. 
cloacae are capable of undergoing these kinds of 
reactions, which take place in the presence of 
anaerobic and aerobic circumstances. That are 
often engaged in the reduction of SeO4

2- 
(Nancharaiah and Lens 2015). SerABC selenate 
reductase is a trimeric molybdenum enzyme that 
aids in the reduction of SeO4

2− into SeO3
2− in the 

periplasm.  
 
However, the purest form of selenate reductase 
enzyme was identified, screened, characterized, 
and purified by Schroder et al. (1997). The 
unique way that selenium-metabolizing bacteria 
operate allows them to break down selenium 
inside their cells. 
 

6.2 Selenite-Metabolising Bacteria 
 
Many different microbial strains reduce SeO3

2−, 
contributing up approximately 43% of the soil 
microbial population that takes part in the 
conversion of SeO3 

2− and SeO4 2− into Se0.  
 
Additionally, anaerobic respiration or 
detoxification both promote this process (Sura-de 
Jong 2015). Different bacterial strains that 
reduce SeO4

2- also exhibit the capacity to 
dissimilatory reduce SeO3

2−, which mostly 
promotes the synthesis of lactate and acetate, 
respectively (Oremland et al. 1994). 
 

6.3 The following reactions involve the 
conversion of SeO3

2− into Se0 
 

C2H4OHCOO−+ SeO2
−3+ H+→ CH3COO−+ 

Se0+ HCO−3+ H2O 
C2H4OHCOO−+ SeO2

−3+ H2 + 2H+→ 
CH3COO−+ Se0+ 3H2O 

 
This is successfully aid in the detoxification 
mechanism by mediating the process of SeO3

2− 
reduction in bacteria, which typically occurs in 

the cytoplasm or periplasm and is then 
translocated to the cell exterior as Se0 (Kessi and 
Hanselmann 2004). Additionally, the reduction of 
SeO3

2− using organic carbon (lactate, propionate, 
butyrate, and acetate) with the help of 
Cronobacter sp. has been demonstrated. In this 
case, organic carbon acts as an electron donor in 
the microaerobic environment where 
microorganisms require oxygen to completely 
decrease SeO3

2- (Estrada et al. 2020). Therefore, 
all of these bacterial strains can be investigated 
for their ability to convert inorganic forms of 
selenium and for use as a source of selenium 
supplement in food. Potential biotechnological 
uses for PGPR include serving as a carrier for 
agricultural biofortification. The selenium linked 
with the bacterial inoculum may be incorporated 
and translocated into leaves and other plant 
parts by plants treated with bacteria that were 
tolerant of selenium.  
 
This bacterial inoculum enhanced with selenium 
can be employed as a biotechnological 
instrument for plant selenium biofortification. 
Wheat plant tissue had higher selenium 
concentrations after being inoculated with 
selenium-enriched rhizobacteria, or 
seleniorhizobacteria, which can metabolize 
selenium (Acuna et al., 2013). The selenium 
content of grain was enhanced in plants co-
inoculated with a combination of selenibacteria 
strains and G. claroideum. A potential substitute 
for increasing the selenium content of cereals 
cultivated on soils poor in selenium is the use of 
microorganisms that are tolerant of selenium.  
 
Many research investigations have demonstrated 
a variety of aerobic bacteria that are resistant of 
selenium, including Pseudomonas aeruginosa, 
Bacillus sp., Stenotrophomonas sp., 
Acinetobacter sp., and Klebsiella sp. (Acuna et 
al., 2013) etc. possess the capacity to 
accumulate selenium, and these bacteria may be 
employed as inoculants to enhance cereal wheat 
with selenium (Table 2). Selenobacteria could 
transform the species and valencies of Se in the 
soil, facilitating Se uptake by plants. Whole-
genome analysis unveiled the genetic elements 
of the two selenobacteria with contrasting Se 
utilization profiles and identified candidate genes 
related to Se utilization. This work significantly 
advances our understanding of the potential 
molecular mechanisms underlying Se 
biofortification by selenobacteria (Liao et al., 
2024). 
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Table 2. Plant growth promoting bacteria used for selenium biofortification in crops 
 

No Microorganisms Plant Method of 
fertilization 

Source of Se Results References 

1. Enterobacter sp. B16, 
Stenotrophomonas sp. B19 

Triticum aestivum L. 
cv. Fritz 

Inoculation Root Selenobacteria Enhanced selenium 
content in Shoot 

Acuna et al. (2013) 

2. Bacillus sp. R8, Enterobacter sp. 
B16, Pseudomonas sp. R12, 
Stenotrophomonas sp. B19 

Triticum aestivum L. 
cv. Puelche 

Inoculation Root Selenobacteria Enhanced selenium 
content in Grain 

Duran et al. (2013) 

3. Bacillus sp. YAM2 Triticum aestivum L. Seed 
palletization 

Selenobacteria Enhanced selenium 
content in wheat 
kernels & stems 

Yasin et al. (2015) 

4. Acinetobacter sp. E6. 1, Bacillus 
sp. R8, Klebsiella sp. E2 

Triticum aestivum L. 
cv. 

Seed 
palletization 

Endophytic 
Selenobacteria 

Enhanced selenium 
content in Shoot 

Duran et al. (2015) 
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7. SELENIUM BIOFORTIFICATION 
MEDIATED BY MICRO-ORGANISMS 
FOR EFFECTIVE AND SUSTAINABLE 
CROP PRODUCTION 

 

Microbes help with Se-biofortification, which 
raises crop nutrient levels and uses them as 
fertilizer for both biotechnological and 
conventional breeding techniques. In areas 
where soil nutrients are scarce, this procedure 
improves the nutritional content of crops 
(Hossain et al. 2021). Additionally, in Se-deficient 
soils, Se-biofortification is carried out by 
choosing a plant species that can better absorb 
micronutrients through their edible organs, 
enhancing the diets of humans and animals.The 
most effective method for ensuring that plants 
absorb selenium is through biofortification, which 
allows diverse agricultural soils deficient in 
selenium to recoup it through animal excrement 
as well (Ye et al. 2020). Certain microorganisms 
help plants absorb nutrients more efficiently, and 
in addition to increase plant growth and 
productivity, these microbes also assist plants 
resist stress. Microflora, including endophytic 
fungi, mycorrhizae, and rhizobacteria that 
promote plant growth, are being employed in 
biofortification processes.  (Hossain et al. 2021). 
Mycorrhizae act as intermediaries. Plant uptake 
of selenium (Se) improved the uptake and 
accumulation of selenium and selenite, 
especially in Glomus versiform and Funneliformis 
sp. (Patel et al., 2018), (Table 3). In this three-
year field experiment, soybean was found to be a 
good candidate for biofortification, able to 
accumulate up to 16.22 mg/kg of Se in the seeds 
with no obvious negative impact on yield (or 
quality). This enrichment could lead to a 
reduction of Se deficiency in the diet of livestock 
and populations. Soybean is able to convert 
almost 95% of the mineral forms of selenium into 
organic forms, even at a rate of 100 g/ha Se. 
(Mrstina et al. 2024). 
 

8. ON SELENIUM BIOFORTIFICATION 
AND NANOTECHNOLOGY 

 

8.1 Nano Materials for the Application 
of Selenium 

 

Selenium is an important micronutrient for 
animals and humans. Though it is not an 
essential nutrient element, a low dose of 
selenium in soil protects plants from various 
abiotic stresses like drought, cold, and toxic 
metals (Feng et al., 2013). As it has chemical 
similarity with sulphur, the uptake to the plant cell 

is carried by sulphur transporters through the 
root plasma membrane through the sulphur 
assimilatory pathway (Gupta et al., 2017). Many 
researchers have published a comparison of 
efcacy in the difusion of nano selenium over 
inorganic selenium usage (Galic et al., 2021; 
Schiavon et al., 2020).  On the other side, 
Domokos-Szabolcsy et al., (2012) observed no 
growth stimulation with nano selenium in tobacco 
(Nicotinia tabacum L.), but the application of 
inorganic selenium at less than 50 mg l −1 
inhibited plant growth. Conversely, the 
application of nano selenium at 50–100 mg kg−1 
stimulated the growth of root system and 
organogenesis in elephant grass (Arundo donax 
L.) by nearly 40%, while the use of inorganic 
selenium did not show any efect on the root 
system, but in turn, it inhibited the growth at 50–
100 mg kg−1 (Domokos-Szabolcsy et al., 2014). 
 
To overcome the present issue; biofortification, a 
method to enhance nutritional status of food 
crops, can address the issue of hidden hunger. 
Nanotechnology may contribute to improving the 
quality of food through biofortification and may 
prove to be an effective and sustainable remedy 
to this issue by foliar application of essentials 
nutrients (Zn, Cu, Fe and Se) nanoparticles and 
their nano-based fertilizers in the soil to improve 
nutrient deficiency. (Ul din et al., 2023). 
 

9. ABIOTIC STRESS MANAGEMENT BY 
SELENIUM  

 
In crops, selenium's function in reducing 
environmental stress has been widely 
documented. At modest concentrations, 
selenium can promote plant development and 
help plants adapt to a variety of environmental 
stressors, including abiotic stressors like drought, 
cold, and heavy metal stress (Oancea et al., 
2015; Mora et al., 2015; Handa et al., 2016). 
Drought stress is one of the most significant 
environmental stressors, which has negative 
effects on plant growth and yield. Se plays an 
active role in the regulation of Plant Antioxidants, 
Chlorophyll Retention, and Osmotic Adjustment 
under Drought Conditions (Dar et al. 2021). 
Plants may grow and develop to their full 
potential if selenium levels in the soil are raised 
during stressful times (Sieprawska et al., 2015). 
Increased water retention in plant tissue may 
result from selenium stimulation's rise in the 
contents of both organic and non-organic             
osmo-protectants (Hajiboland et al., 2015). It  
was widely accepted that adding selenium 
lessens these pressures' detrimental effects           



 
 
 
 

Yadav et al.; J. Adv. Biol. Biotechnol., vol. 27, no. 12, pp. 70-94, 2024; Article no.JABB.127827 
 
 

 
81 

 

on plants' and fruits' ability to produce biomass 
(Xue et al., 2001). 
 
The activation of antioxidative enzymes by 
selenium in appropriate amounts helps modulate 
oxidative stress (Hartikainen et al., 2000). Three 
mechanisms exist by which selenium can control 
the amounts of reactive oxidative species (ROS) 
in stressed plants: (1) by stimulating the O2− 
spontaneous dismutation into H2O2; (2) by a 
direct interaction between molecules containing 
selenium and ROS; (3) by regulating the activity 
of antioxidant enzymes. One important way that 
selenium may help plants avoid stress is by 
controlling the amount of ROS they produce. 
Plant cells produce very little ROS under normal 
circumstances. Stress conditions like as drought, 
excessive water, intense light, cold, salt, and 
heavy metals, on the other hand, can cause a 
buildup or increase in ROS levels in plants. An 

increase in ROS generation can be harmful to 
plants. The primary types of ROS are singlet 
oxygen (O2), hydroxylic free radical (OH), 
hydrogen peroxide (H2O2), superoxide anion 
(O2−), and methyl radical (CH3). When plants are 
exposed to various environmental stressors, a 
small amount of selenium added to the growth 
substrates can lower the excess ROS formation 
(Cartes et al., 2010), (Fig. 2).  Foliar Se 
application provides the deposit of droplets 
containing elements on the leaves, The main 
pathway for nutrients to enter the leaves is 
through a passive process due to difference in 
concentration, which occurs on the external 
surface, where there is a higher concentration of 
solute, towards the internal, with a lower 
concentration of solutes, through the aqueous 
pores present in the cuticles, proceeding to the 
mesophilic cells through specific transporters 
(Yang et al., 2019).  

 

Table 3. Microbes mediating Se-biofortification for sustainable agricultural practices 
 

S.No. Micro-organism Plant species References 

1. Acinetobacter sp. Triticum aestivum Duran et al. (2013) 

2. Alcaligenes faecalis, 
Paraburkholderiame 
gapolitana,  

Ricinus communis, Glycine max Trivedi et al. (2020) 
 

3. Anabaena sp. Triticum aestivum Abadin et al. (2017) 
4. Bacillus amyloliquefaciens Arabidopsis thaliana Wang et al. (2017) 
5. Bacillus axarquiens Triticum aestivum Duran et al. (2013) 
6. Bacillus cereus Triticum aestivum Yasin et al. (2015) 
7. Glomus fasciculatum Allium sativum Patharajan and 

Raaman (2012) 

8. Glomus irtraradices Allium sativum Larsen et al. (2006) 
9. Rhizophagus intraradices Lactuca sativa, Asparagus 

officinalis, Lac- tuca sativa,  
Allium cepa 

Sanmartin et al. (2018) 
 

10. Glomus versiform Triticum aestivum Luo et al. (2019) 
11. Glomus mosseae Lolium perenne, Allium sativum, 

Medicago sativa, Glycine max, 
Zea mays 

Patharajan and 
Raaman (2012);  
Yu et al. (2011) 

12. Trichoderma harzianum Allium cepa Sanmartin et al. (2018) 
13. Alternaria seleniiphila, 

Alternaria astragali, 
Aspergillus leporis,  
Fusarium acuminatum 

Stanleya pinnata, Astragalus 
bisulcatus, Stanleya pinnata, 
Astragalus racemosus 
 

Lindblom et al. (2013) 
 

14. Bacillus sp. R12, 
Enterobacter sp. B16, 
Pseudomnas sp. R8, 
Stenotrophomonas sp. B19 

Triticum aestivum Duran et al. (2013) 

15. Bacillus subtilis Allium cepa Golubkina et al. (2019) 
16.  Bacillus licheniformis, 

Bacillus pichinotyi 
Triticum aestivum Yasin et al. (2015) 

17. Bacillus mycoides Brassica juncea Lampis et al. (2009) 
18. Bacillus sp. E6.1, 

Enterobacter ludwigii, 
Klebsiella oxytoca 

Triticum aestivum Duran et al. (2014) 
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S.No. Micro-organism Plant species References 

19. Calothrix sp.] Providencia 
sp. 

Triticum aestivum Rana et al. (2012); 
Yasin et al. (2017) 

20. Rhizobium sp. Astragalus bisulcatus, A. 
drummondii 

Alford et al. (2014) 

21.  Stenotrophomonas 
maltophilia 

Ricinus communis, Glycine max, 
Brassica juncea 

Businelli et al., (2015) 

 

 
 

Fig. 2. Selenium uptake and assimilation mechanisms by plants 
 

Table 4. Summarizing selenium's effects on different abiotic stresses 
 

Abiotic Stress Effect of Selenium References 

Drought Stress Enhances water use efficiency, 
reduces oxidative damage, 
improves survival under 
drought conditions. 

Liu et al. (2014), Wu et al. 
(2017) 

Salinity Stress Reduces salt toxicity by 
improving antioxidant activity, 
ion balance, and osmotic 
regulation. 

Zhang et al. (2018), Zhang et 
al. (2020) 

Temperature Stress Mitigates heat and cold stress 
by boosting antioxidant 
defense systems and 
stabilizing cellular structures. 

Hasan et al. (2019), Yang et al. 
(2020) 

Heavy Metal Stress Reduces heavy metal toxicity 
(e.g., Cd, Pb) by enhancing 
antioxidant mechanisms and 
improving metal tolerance. 

Zhang et al. (2019), Azhari et 
al. (2021) 

UV Radiation Stress Protects plants from UV-
induced damage by promoting 
antioxidant systems and 
reducing oxidative stress. 

Djanaguiraman et al. (2013), 
Panda et al. (2017) 

 
The field experimental results revealed that 
induced drought stress at panicle initiation stage 
had drastically reduced the growth characters, 
tiller production, and grain and straw yields. 
Under both normal and drought induced 

conditions, foliar application of Se (either 10 ppm 
or 20 ppm) resulted in a significant increase in 
growth parameters (plant height, LAI, drymatter 
production) and tiller development, which 
subsequently enhanced rice grain and straw 
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yields. Hence, the field study confirmed that 
selenium foliar spraying to be an efficient 
strategy for improving rice yield under drought 
conditions (Monisha et al., 2021). 
 
Selenium can be added to stressed plants to 
increase their antioxidant levels, which will 
control the amount of reactive oxygen species. In 
order to counteract the increased ROS levels, 
plants typically activate two different forms of 
antioxidants. Low molecular weight compounds 
like glutathione and ascorbic acid are one type of 
antioxidant; enzymes such as superoxide 
dismutase, peroxidase, catalase, ascorbate 
peroxidase, glutathione reductase, and 
glutathione peroxidase are another type of 
antioxidant (Hartikainen et al., 2000). These 
antioxidants have the ability to interact with ROS 
directly or indirectly through the activity of 
enzymes. Selenium has the ability to directly or 
indirectly regulate the synthesis and scavenging 
of reactive oxygen species (ROS) by modulating 
antioxidant levels. It is generally known that 
glutathione and selenium can combine directly to 
create selenocysteine, selenio-methionine, and 
eventually proteins that contain selenium (Terry 
et al., 2000).  
 
The mechanism behind this beneficial effect of 
selenium on antioxidant capacity could be either 
indirect—caused by selenium-induced activation 
of general stress resistance mechanisms—or 
direct—caused by the antioxidant activity of 
selenio-compounds. Additionally, adequate 
selenium levels can shield plants from the harm 
that heavy metals like As, Hg, Pb, Cd, Zn, Cu, 
and Cr can inflict (Malik et al., 2012). Selenium 
may limit the uptake and translocation of heavy 
metals from plant roots, which could be a 
relevant heavy metal detoxification process. 
 

10. SELENIUM FOR CROP YIELD 
IMPROVEMENT 

 
Many studies have been conducted to ascertain 
the advantageous function of Se in enhancing 
yield (Broadley et al., 2010; Ekanayake et al., 
2015; Nawaz et al., 2016). Studies on the effects 
of selenium (Se), including fertilizer, foliar 
spraying, and nanoparticles, on crop yield 
enhancement. Under drought stress, exogenous 
Se-foliar spray (40 mg L−1) boosted the crude 
protein by 47%, fiber synthesis by 10%, and Se 
contents by 36% without changing the crude ash 
contents (Nawaz et al., 2016).  Ekanayake et al. 
(2015) examined the effects of field-applied 
selenium (30 g ha−1 of SeO32− and SeO42−) on 

the production of lentil grains at the 50% 
flowering and seedling phases. The production of 
lentil seeds increased by 10 and 4%, 
respectively, upon the use of these fertilizers. 
Sweet corn's response to exogenous Se spray 
has been reported by Huang et al. (2019). A 
spray applied at different growth stages with 
different doses of Se fertilizer (0.80–1.00 g Se 
L−1) increased the sugar content and had a 
beneficial influence on seed production.  
 
Recent reports describe the application of Se 
nanoparticles to increase crop output. 
Hernandez-Hernandez et al. (2019) shown that 
utilizing 10 mg L−1 of Se nanoparticles increased 
tomato yield by 21%. Additionally, vitamin C, 
GSH, flavonoid levels, firmness, total soluble 
solids (TSS), and fruit acidity were all improved 
by the selenium treatment. In addition, Zahedi et 
al. (2019b) showed how Se (Na2SeO4) foliar 
spray and Se nanoparticles affected various 
pomegranate growth indices. Applications made 
in tandem significantly enhanced yield, peel 
diameter, and fruit count. 
 

11. IMPROVEMENT OF CROP QUALITY 
BY SELENIUM BIOFORTIFICATION 

 
Enhancing the essential nutritional content in 
edible portions of plants, animals, or 
microorganisms using agronomic or 
biotechnological processes is known as 
biofortification.  To mitigate micronutrient 
deficiencies, agronomic biofortification is a 
simple, effective, and environmentally friendly 
method (Yuan et al., 2012). The best way to 
enrich crops with this element is one of the most 
important aspects of Se biofortification. Selenium 
can be sprayed on the foliage, added to mineral 
fertilizers, or mixed into the nutrient medium in 
hydroponic farming. (Hawrylak-Nowak, 2013; 
Banuelos et al., 2017; Golubkina et al., 2018). 
The efficiency, simplicity, and lack of 
multidirectional chemical changes of selenium in 
the soil, along with its limited translocation to 
aboveground organs, appear to be the benefits 
of applying selenium topically over soil 
application. There seems to be less of a risk of 
environmental pollution because the foliar spray 
requires a minimal consumption of Se salts 
(Puccinelli et al., 2017; Hawrylak-Nowak et al., 
2018c).  
 
The foliar application of Se has an advantage 
over the other methods, according to a recent 
study by Motesharezadeh et al. (2020) on alfalfa 
grown in calcareous and non-calcareous soils 
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supplied with Se (Se soil application, 
selenobacteria inoculation, Se foliar application, 
combined soil and foliar Se application). 
Additionally, they proposed that a natural way of 
enhancing the quality of alfalfa feed could be by 
the inoculation of plants with selenobacteria. In a 
closed soilless system, Pannico et al. (2019) 
found that Se treatments (8–40 μM as SO4

2−) 
decreased the production of green butterhead 
lettuce (FW), while yield reduction in the red 
cultivar was noted at ≥32 μM Se. Significantly, 
both cultivars showed a rise in the foliar Se 
content; however, the red butterhead lettuce 
absorbed around 57% more Se than the green 
one. Further, the red cultivar's carotenoid content 
increased with 32 μM Se, while the phenolic acid 
and anthocyanin contents increased with 16 μM 
Se.  
 

Selecting the appropriate type of selenium (Se) is 
essential for successful biofortification. The 
majority of research has shown that SeO4

2− is a 
more effective form than SeO3

2− for foliar and soil 
treatment. (Lyons, 2018). Wang et al. (2020) 
reported that the uptake of inorganic selenium 
from foliar spray was found to be more efficient 
than that of its organic forms. Additionally, the 
phloem was found to transport tiny amounts (less 
than 10%) of selenium deposited in the shoots to 
other organs. On the other hand, organic Se was 

absorbed by the roots at a significantly higher 
rate than inorganic Se. The most significant 
selenium uptake and translocation by the xylem 
and phloem was brought about by the application 
of selenium methyl cysteine. In four rice cultivars, 
Lidon et al. (2019) observed that foliar SeO3

2− 
fertilization increased grain Se content by 427–
884 times, whereas SeO4

2− treatment increased 
grain Se concentrations by 128–347 times.  
 

In addition to raising the concentration of Se in 
the rice grains, the foliar application of Se also 
enhanced the concentration of other bioactive 
compounds. Lidon et al. (2018) supplied various 
rice genotypes with 30–300 g Se ha−1 as SeO3

2− 
or SeO4

2− in a previous agronomic biofortification 
study. Both Se forms induced an increase in total 
lipids (particularly oleic, linoleic, and palmitic 
acids), sugars, and proteins; however, the 
macronutrient content of the rice flour varied 
within the rice genotypes. Se malnutrition may be 
effectively decreased in Se-deficient areas by 
raising the Se content of cereals (rice and wheat) 
using a process known as Se biofortification. The 
application of 10 g Se ha−1 boosted the Se 
content of wheat grain in the UK by up to 10 
times, according to research by Broadley et al. 
(2010). Another potential method of Se-
biofortification is the use of arbuscular 
mycorrhizal fungi (AMF) (Golubkina et al., 2020). 

 

Table 5. Scalability of selenium biofortification for smallholder farmers 
 

Factor Impact on Scalability References 

Soil Selenium Availability Selenium biofortification 
depends on the selenium 
content in soil. In regions with 
selenium-deficient soils, 
selenium fertilization is 
necessary for biofortification. 

White & Broadley (2009), 
Bañuelos et al. (2015) 

Cost of Fertilizers and Inputs The cost of selenium fertilizers 
can be a significant barrier, 
especially for smallholder 
farmers. Cost-effective 
solutions or subsidies may be 
required. 

Ali et al. (2016), Gupta et al. 
(2017) 

Crop Selection and Adaptation Certain crops (e.g., wheat, rice) 
accumulate selenium better 
than others. Biofortification 
efforts must focus on crops that 
are adapted to the local 
environment. 

Tiwari et al. (2017), Ghasemi 
et al. (2020) 

Local Knowledge and Training Education and training 
programs for smallholder 
farmers are essential for 
effective selenium 
biofortification, improving both 
yield and health outcomes. 

Ríos et al. (2018), Tiwari et al. 
(2019) 
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Factor Impact on Scalability References 

Market Demand and Education The success of biofortified 
crops also depends on 
consumer awareness and 
demand for selenium-enriched 
foods, which can drive the 
adoption of biofortification 
practices. 

Meacham et al. (2017), Ortiz et 
al. (2020) 

Environmental and Policy 
Support 

Government policies, 
subsidies, and agricultural 
extension services play a 
crucial role in supporting 
selenium biofortification at a 
larger scale. 

Bañuelos & Lin (2018), Ríos et 
al. (2020) 

 

12. POTENTIAL RISKS OF SELENIUM 
OVERUSE AND REGULATORY 
CHALLENGES 

 

Selenium is an essential micronutrient for both 
plants and humans, but like many nutrients, its 
overuse can lead to toxicity and environmental 
issues. Overuse of selenium, especially in 
agricultural settings, may pose several risks to 
ecosystems, human health, and agricultural 
practices. Additionally, regulatory frameworks for 
selenium use in agriculture, especially for 
biofortification and fertilization, can be complex 
and require careful management. 
 

12.1 Potential Risks of Selenium Overuse 
 
12.1.1 Toxicity to plants 
 
o Selenium toxicity in plants: While 

selenium is necessary for plant growth at 
low levels, excessive selenium can be 
toxic, leading to reduced plant growth and 
yield. Plants that accumulate too much 
selenium may suffer from chlorosis, 
necrosis, and overall poor health. 
Selenium can also disrupt the uptake of 
other essential nutrients like sulfur and 
phosphorus. Toxicity symptoms include the 
inhibition of root and shoot growth, which 
ultimately leads to poor crop performance 
(Zhang et al., 2019; Ghasemi et al., 2020). 

 
12.2 Environmental Pollution 
 
o Soil and water contamination: Excessive 

application of selenium fertilizers can lead 
to selenium accumulation in soils, 
potentially contaminating water sources. 
This can harm aquatic life, as selenium is 
highly toxic to fish and other organisms 
when concentrations exceed certain 

thresholds. Over-application can lead to 
selenium leaching into groundwater and 
nearby water bodies, affecting biodiversity 
and ecosystem health (Bañuelos et al., 
2015). 

 
12.3 Human Health Risks 
 
o Selenium toxicity in humans: 

Overconsumption of selenium through 
biofortified crops or dietary supplements 
can lead to selenosis, a condition caused 
by excessive selenium intake. Symptoms 
of selenosis include nausea, diarrhea, 
fatigue, and hair loss. In severe cases, 
selenium toxicity can lead to nerve 
damage or even death (Yang et al., 2005). 
While selenium deficiency is a concern in 
many regions, biofortification practices 
must be carefully managed to avoid the 
risk of overconsumption in populations that 
are already selenium-replete. 

 
12.4 Disruption of Ecosystem Balance 
 
o Bioaccumulation in food chains: 

Selenium can bioaccumulate in food 
chains, particularly in aquatic ecosystems, 
where organisms like fish may accumulate 
selenium to toxic levels. This poses risks to 
wildlife and can affect species diversity in 
ecosystems that are already sensitive to 
heavy metal contamination (Ohlendorf, 
2003). 

 
12.5 Regulatory Challenges 
 
12.5.1 Lack of standardized guidelines 
 
o Absence of universal standards: 

Selenium biofortification and its use in 
agriculture lack standardized guidelines 
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across different regions. The 
recommended levels of selenium in soils 
and crops vary between countries, making 
it difficult to establish consistent regulatory 
frameworks for selenium use. The risk of 
over-application arises when local 
agricultural practices do not align with 
scientifically established safe thresholds 
for selenium concentration in crops 
(Bañuelos & Lin, 2018). 

 
12.5.2 Regulation of fertilizer use 
 
o Monitoring and regulation of selenium 

fertilizers: While there are regulations on 
the application of fertilizers, specific 
standards for selenium use are less 
common. In many regions, selenium 
fertilizers are not regulated in the same 
way as other micronutrients or pesticides. 
This can lead to inconsistent use and 
possible over-fertilization, especially if 
farmers are unaware of the risks of 
selenium overuse. Regulatory authorities 
may face challenges in monitoring the 
correct application rates, especially in low-
income regions where training and 
resources are limited (Bañuelos et al., 
2015). 

 

13. CHALLENGES IN BIOFORTIFICATION 
 
o Ensuring safe biofortification levels: 

The regulatory challenge in biofortifying 
crops with selenium lies in ensuring that 
biofortified foods contain enough selenium 
to address nutritional deficiencies without 
reaching levels that could be harmful. 
Regulatory bodies need to define upper 
limits for selenium content in biofortified 
foods to avoid unintentional 
overconsumption in vulnerable populations 
(Petry et al., 2017). Balancing nutritional 
needs with safety is key to successful 
selenium biofortification programs. 

 

13.1 Lack of Awareness and Education 
 
o Education and awareness programs: 

Farmers and consumers may not be fully 
aware of the risks of selenium overuse, 
both in the form of fertilizers and 
biofortified crops. Regulatory agencies 
must invest in awareness programs to 
educate farmers on safe selenium 
application methods and help them 
understand how to monitor and manage 

selenium levels in soils and crops. 
Similarly, consumers need to be informed 
about the benefits and potential risks of 
biofortified foods (Rios et al., 2018). 

 

14. CONCLUSION AND FUTURE 
PROSPECTIVE  

 
Application of selenium and microorganisms 
(selenorhizobacteria) pelleted seeds when 
applied in soil or the rhizosphere will stimulate 
natural processes to enhance nutrient uptake, 
productivity, abiotic stress tolerance and crop 
quality which can be considered as a safe, cost 
effective approach to achieve this target in 
selenium deficient areas. Utilizing selenium-
tolerant bacteria (selenorhizobacteria) in 
biotechnological applications is a viable 
approach to selenium biofortification. Further 
investigation is necessary to identify the 
selenium forms found in grains as well as the 
genetic and biochemical pathways that underlie 
the biofortification of plants with selenium in 
order to develop innovative technologies for 
selenium biofortification initiatives.  
 
Therefore, management techniques should 
concentrate on building a link between 
agricultural enriched food products, selenium 
concentration, and bioavailability in soil in order 
to minimize selenium shortage and associated 
diet related disruptions by the plant growth 
boosting bacteria. The fundamental mechanisms 
of selenium uptake, distribution, and metabolism, 
as well as any favorable or detrimental effects on 
plant physiology and plant performance under 
abiotic stressors, have all been covered in this 
study.  
 
Additionally, we proposed the biofortification 
topic. At low quantities, selenium has positive 
impacts on plant growth and development. 
Furthermore, it has been documented that both 
hyperaccumulator and non-hyperaccumulator 
plants benefit from growth effects associated with 
the ideal Se concentration. Whether Se is a 
necessary plant nutrient or not is still up for 
debate. For superior plant performance brought 
about by the administration of Se, the ideal dose 
of Se should be determined for each species of 
plant, as well as for each development stage, 
size, growth substrate, application method, form, 
and—above all—the concentration of Se in the 
tissue. Se can effectively increase tolerance to a 
variety of abiotic stressors, as demonstrated by a 
substantial body of experimental data, which 
calls for further, in-depth research. Furthermore, 
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just a few crops have been researched in this 
area, although Se has potential as a 
biofortification or phytofortification agent 
enhancing the nutritional quality of meals. The 
synthesis of non-specific Seproteins, pro-
oxidative creation of ROS, and oxidative stress, 
which impede physiological functions, have been 
linked to selenium phytotoxicity. It boosts the 
creation of reactive oxygen species (ROS) 
because it is a pro-oxidant; nevertheless, it has 
been shown that a modest amount of selenium 
(Se) can upregulate the antioxidant defense 
system, which is an intriguing area of research. 
The results of the study showed that selenite 
resistance is regulated by ethylene and 
jasmonate acid signaling. Plant growth and 
development under both normal and stress 
conditions are thought to be influenced by the 
interplay between phytohormones and selenium 
(Se), which in turn regulates genes involved in 
Se production, uptake, and assimilation. 
(Tamaoki et al., 2008; Van Hoewyk et al., 2008; 
Freeman et al., 2010; Wang et al., 2018). The 
study should be expanded to take into account 
various growth environments, both in the lab and 
in the field, and to use a variety of grown plants 
as test plants. It is important to extensively utilize 
omics technologies, such as transcriptomics, 
proteomics, metabolomics, and genomics, in 
various plant species to determine the 
mechanism of selenium's presence as a 
beneficial or harmful component. Furthermore, 
the engineering of Se-mediated metabolic 
pathways can help identify the true mechanism 
behind Se-mediated stress tolerance and offer 
fresh perspectives on current understanding. 
 

The future of selenium biofortification lies in the 
integration of cutting-edge technologies like 
omics (genomics, proteomics, metabolomics, 
etc.)  and CRISPR/Cas9 gene editing. These 
technologies will not only enhance the efficiency 
and precision of biofortification but will also 
ensure that crops are tailored for both high 
selenium content and minimal toxicity risk. 
Additionally, continued research into the human 
health implications of biofortified foods and the 
environmental sustainability of selenium use will 
be essential for the successful scaling of 
selenium biofortification in agriculture. 
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