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Abstract 

 
The study addresses the critical issue of optimizing construction materials to enhance structural integrity, 

minimize cracks, and prevent building collapses in Nigeria. It utilizes fractional factorial design and response 

surface methodology (RSM) to systematically determine the optimal parameters for concrete mix design to 

achieve maximum compressive strength. The key factors studied included standard sand size, curing time, 

water-cement ratio, type of cement, and stone gravel size. Minitab software was employed for its powerful 

statistical analysis capabilities, enabling efficient execution of fractional factorial design and response surface 

methods to analyse the data. The analysis revealed that the type of cement, water-cement ratio, and standard 

sand size significantly influenced compressive strength. The optimal conditions identified were: standard 

sand size of 20 mm, water-cement ratio of 0.5, BUA cement type, stone gravel size of 20 mm, and curing 

time of 28 days, achieving a predicted compressive strength of 44.175 MPa. The model demonstrated high 

reliability with an R-squared value of 99.50%. The findings offer valuable insights for enhancing the quality 
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of building materials in the construction industry. By applying the optimized parameters, stakeholders can 

significantly improve structural integrity, reduce building failures, and ensure longer-lasting, safer 

constructions. This can lead to more durable infrastructure in Nigeria, addressing critical issues related to 

building safety and material performance. 

 

 

Keywords: Optimization; construction materials; fractional factorial design; response surface methodology; 

compressive strength; building safety. 

 

1 Introduction 

 
Experiments in engineering and science typically aim to observe system responses based on a series of 

controlled inputs. The goal is often to characterize outputs, model the system for prediction, and optimize its 

performance while minimizing errors and expediting the process. More experiments yield more data, improving 

system characterization. However, conducting multiple experiments can be costly, making efficient 

experimental design crucial (Montgomery, 2017). 

 

Factorial design involves experimenting with two or more variables (factors), each having distinct values called 

levels. Factors can be quantitative or qualitative, and their combinations are tested to study their effects. When 

the number of factors increases exponentially, leading to an impractical number of experiments, fractional 

factorial design (FFD) is used to reduce the experimental load by analyzing only a fraction of the full factorial 

combinations. This approach retains the ability to study main and interaction effects efficiently (Box and 

Hunter, 1961; Montgomery, 2012). FFD was first introduced by Box and Wilson (1951), providing a cost-

effective method for studying multiple factors with fewer experiments. 

 

Several studies have successfully applied FFD across various fields. Shobha et al. (2021) used FFD to optimize 

the electroless nickel coating process, enhancing corrosion resistance. Jonna et al. (2023) employed FFD to 

optimize the formulation of extended-release tablets, while Bhavsar and Sharma (2021) applied it in the Quality 

by Design (QbD) framework to improve fermentation conditions for maximizing Ferulic Acid yield. These 

studies demonstrate FFD’s versatility in optimizing processes across industries. 

 

Complementary to FFD is Response Surface Methodology (RSM), introduced by Box and Draper (1959). RSM 

is a statistical technique used to model and optimize complex processes, identifying optimal input conditions to 

improve responses. In construction, RSM can predict relationships between input variables and construction 

outcomes, optimize resource allocation, and enhance structural integrity (Ferdosian et al., 2017; Luan et al., 

2021). RSM’s strength lies in its ability to explore factor interactions and find optimal solutions with minimal 

experimentation. Hend et al. (2021) applied RSM to optimize nanoparticle synthesis, while Ferreira et al. (2019) 

compared various RSM approaches to optimize methods in food analysis. 

 

The construction industry, a key driver of global economic growth, constantly seeks to improve processes and 

materials to meet rising infrastructure demands. Concrete, a versatile and widely used building material, plays a 

critical role in this industry due to its strength, durability, and adaptability (Vishnupriyan and Annadurai, 2023). 

Enhancing the properties of concrete, especially its compressive strength, is essential for improving structural 

integrity and reducing building defects. 

 

This research aims to optimize the compressive strength of concrete mixtures using FFD to identify significant 

factors and RSM to optimize those factors. By investigating variables such as standard sand size, curing time, 

water-cement ratio, cement type, and gravel size, this study seeks to provide a robust framework for improving 

concrete quality and preventing structural failures. 

 

2 Statement of the Problem 

 
The optimization of construction materials to prevent building collapses, reduce cracks, and enhance overall 

structural integrity remains a significant challenge in construction engineering. Cracks not only affect the 

aesthetics of structures but also raise concerns about safety and longevity. Achieving the optimal material 
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composition and processing conditions to minimize fractures while ensuring structural durability requires a 

systematic approach. The complex interplay between materials, environmental factors, and design specifications 

calls for a comprehensive method to address these challenges effectively.  

 

Research by Uduak et al. (2018) highlighted the issue of building collapses in Nigeria, with poor-quality and 

substandard materials identified as critical factors contributing to these disasters. In several cases across Lagos, 

Ibadan, Enugu, and Abuja, substandard materials were the primary cause in 186 recorded building collapses, 

ranking third as a major factor. Improving the quality of building materials is essential to ensuring the safety of 

structures, protecting lives, and safeguarding property nationwide.  

 

A study by Abed et al. (2023) optimized concrete properties using three types of acetate admixtures (potassium, 

calcium, and ethyl acetate) through the response surface methodology (RSM). However, this narrow focus left 

unanswered questions regarding other critical parameters affecting structural integrity and crack prevention. To 

address these limitations, this study expands the scope by investigating five key factors (standard sand size, 

curing time, water-cement ratio, cement type, and stone gravel size) using both fractional factorial design and 

RSM. This broader approach provides a more complete analysis, aiming not only to optimize compressive 

strength but also to minimize cracks and prevent building collapses, thus offering a more holistic solution to 

material optimization in construction. 

 

3 Methodology 

 
3.1 Problem Solution  

 
3.1.1 Experimental 

 

There are five parameters involved in concrete mix design, which are Standard Sand (SS), Curing Time (CT), 

Water-Cement Ratio (WCR), Type of Cement (TC), and Stone Gravel (SG). Standard Sand has two levels, 

16mm and 20mm, representing the particle size of the sand used in the mix. Curing Time varies between 7 days 

and 28 days, indicating the time period for which the concrete is allowed to harden. Water-Cement Ratio (WCR) 

includes levels of 0.4 and 0.5, which control the mix's water content relative to the cement. The Type of Cement 

includes Dangote (450g) and BUA (450g), representing two common brands used. Lastly, Stone Gravel (SG) 

includes two particle sizes, 16mm and 20mm. All the compositions of five parameters will be mixed together as 

tabulated in Table 1. In regression modeling or factorial designs, these factors can be coded into levels of -1 and 

+1, where -1 represents the lower level and +1 represents the higher level. This coding simplifies the statistical 

analysis by normalizing the variables, making it easier to detect the main, interaction, and quadratic effects 

among the factors. 

 

Table 1. Design parameters and their levels 

 

Parameters Level 1 Level 2 

standard sand particle size 16 mm 20 mm 

curing time 7 days  28 days  

water cement ratio 0.4mm 0.5 mm 

type of cement  Dangote (450 g)  BUA (450 g) 

stone gravel particle size 16 mm 20 mm 
Source: BUA cement physical laboratory 

 

The table presents five factors influencing compressive strength in concrete mixtures, with each factor having 

two levels: Standard Sand (SS), Curing Time (CT), Water-Cement Ratio (WCR), Type of Cement (TC), and 

Stone Gravel (SG). Standard Sand has two levels, 16 mm and 20 mm, representing the particle size of the sand 

used in the mix. Curing Time varies between 7 days and 28 days, indicating the time period for which the 

concrete is allowed to harden. Water-Cement Ratio (WCR) includes levels of 0.4 and 0.5, which control the 

mix's water content relative to the cement. The Type of Cement includes Dangote (450 g) and BUA (450 g), 

representing two common brands used. Lastly, Stone Gravel (SG) includes two particle sizes, 16 mm and 20 

mm.  
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3.1.2 The 2
m p−

design used as a factor screen  

 

2
m p−

Fractional Factorial design in Design of Experiment (DOE) will be used to screen and find out the most 

significant factors influencing the compressive strength of a concrete mixture. 

 

The main use of fractional factorial designs is in screening experiments (Montgomery, 2017) described 

screening experiments as tests in which many factors are considered and the objective is to identify those factors 

that have significant effects. 

 

The Full Factorial Designs or Fractional Factorial Designs are first-degree models and their response equations 

at two levels have an inherent assumption of linearity. 

 

The response of an experiment could be modelled using an empirical model as 

 

i
y   = + +

            3.1 

 

..........
k

i j j ij i j

j i j

x x x  


= + +   

 

Where 𝑦 is the experimental response, 𝜇 is the mean population, 𝜏 is the treatment effect and 𝜖 is the 

experimental error. The treatment effect will correspond to the response of the factors; it will not always have to 

be linear because it depends on the complexity of the system.  

 

The figure below shows a multivariate linear regression model (that includes interaction terms) based on at two-

level factorial design: 

 

 

                              3.2 

 

 

Y is the response variable  

0
  Is the mean  

i
  Represent the main effect of the factor 

i
x  

ij
 Represents the interaction effect between factors 

i
x and 

j
x  

....
i jkl

 Represent higher-order interaction terms involving factors , , , ......
i j k l

x x x x  

, , , ......
i j k l

x x x x  Are the levels or settings of the factors. 

,
i j

x x  Represent the error term. 

 

3.1.3 The Response surface methodology   

 

Response Surface Methodology is a collection of mathematical and statistical techniques useful for modeling 

and analyzing problems in which a response of interest is influenced by several variables and the objective is to 

optimize this response and find the optimising parameter combination to improve compressive strength of 

concrete mixture. 

 

For two independent variables, the first order model is given as  

 

0 1 1 2 2
X X   = + +

                         3.3
 

 

This is called a main effect model, because it represents the main effects of two variables 
1

X and 
2

X
      

 

0 1 1 1 1 1
... ... ... ... ..

k k k k k

i i ij i j ijkl i j k li i i j i
y x x x x x x x    

= = = = =
= + + + + +    



 
 

 

 
Dauran and Musa; Asian J. Prob. Stat., vol. 26, no. 11, pp. 144-156, 2024; Article no.AJPAS.125479 

 

 

 
148 

 

If there is an interaction, we have  

 

0 1 1 2 2 12 1 2
X X X X    = + + +

                       3.4 

 

A second-order model will likely be required in this situation for the case of two variables, which is 

 
2 2

0 1 1 2 2 11 1 22 2 12 1 2
X X X X X X      = + + + + +

                     3.5 

 

The General first-order model:   

 

0 1 1 2 2
.........

K K
X X X    = + + + +                        3.6 

 

The General Quadratic Response Surface Methodology (RSM) Model:  

 

The model encompasses linear, quadratic and interaction terms for a system with k factors. 

 

2

0 1 1

k k k k

i i ii i ij i ji i i j i
Y x x x x    

= = +
= + + + +   

                     3.7 

 

Where  

 

Y is the response variable  

0
  Is the intercept 

i
  Represent the linear coefficient for factor 

i
x  

ii
  Represents the quadratic coefficient for factor 

i
x  

i j
  Represent the interaction coefficient between factors 

i
x and 

j
x  

,
i j

x x And 
j

x  are the levels or setting of the factors i and j respectively. 

 

Table 2. Design layout and experiment result 

 

Standard sand Curing time Water-cement 

Ratio 

Type of 

cement 

Stone gravels Compressive 

strength 

16 7 0.4 -1 20 20.8 

20 7 0.4 -1 16 19.7 

16 28 0.4 -1 16 19.5 

20 28 0.4 -1 20 19.8 

16 7 0.5 -1 16 22.9 

20 7 0.5 -1 20 27.4 

16 28 0.5 -1 20 23.7 

20 28 0.5 -1 16 27.8 

16 7 0.4 1 16 40.0 

20 7 0.4 1 20 41.5 

16 28 0.4 1 20 41.3 

20 28 0.4 1 16 42.5 

16 7 0.5 1 20 41.8 

20 7 0.5 1 16 43.0 

16 28 0.5 1 16 42.0 

20 28 0.5 1 20 44.0 
Source: BUA cement physical laboratory 
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4 Results and Discussion  

 
This section present the result obtained using the method discussed above by fractional factorial design and 

response surface methodology.  

 

4.1 Analysis of variance (ANOVA) 

 
Table 3. Analysis of variance 

 

Source DF Adj SS Adj MS F-Value P-Value 

Model 14 1582.29 113.02 3690.47 0.013 

Linear 5 1540.91 308.18 10063.09 0.008 

Standard sand 1 11.12 11.12 363.20 0.033 

Curing time 1 3.85 3.85 125.73 0.057 

Water cement ratio 1 33.52 33.52 1094.54 0.019 

Type of cement 1 1491.89 1491.89 48714.80 0.003 

Stone gravel 1 0.53 0.53 17.16 0.151 

2-way interactions 9 30.11 3.35 109.24 0.074 

Standard sand*curing time 1 0.14 0.14 4.59 0.278 

Standard sand*water cement ratio 1 6.13 6.13 200.02 0.045 

Standard sand*type of cement 1 0.23 0.23 7.37 0.225 

Standard sand*stone gravel 1 0.77 0.77 25.00 0.126 

Curing time*water cement ratio 1 0.11 0.11 3.45 0.314 

Curing time*type of cement 1 0.77 0.77 25.00 0.126 

Curing time*stone gravel 1 4.95 4.95 161.65 0.050 

Water cement ratio*type of cement 1 17.02 17.02 555.61 0.027 

Water cement ratio*stone gravel 1 0.02 0.02 0.51 0.605 

Error 1 0.03 0.03 
  

Total 15 1582.32 
   

 

Table 3 revealed that the model has an f-value of 3690.47 with a p-value of 0.013, indicating that the model is 

statistically significant and can explain the variability in compressive strength effectively; also the ANOVA 

table presents the statistical analysis of factors influencing compressive strength in concrete, highlighting both 

main effects and two-way interactions. The model is highly significant, with a p-value of 0.013, indicating a 

strong relationship between the factors and the response (compressive strength). Among the main effects, type 

of cement has the most significant impact (p = 0.003), showing that the choice of cement, such as BUA or 

Dangote, is crucial for achieving higher compressive strength in construction. The water-cement ratio (p = 

0.019) and standard sand size (p = 0.033) are also significant factors, emphasizing the importance of proper mix 

design to optimize strength. Although curing time has a relatively high F-value, it is not statistically significant 

at the 0.05 level (p = 0.057), suggesting it plays a role but is less influential compared to the other factors.  

 

Regarding two-way interactions, standard sand size and water-cement ratio (p = 0.045) and water-cement ratio 

and type of cement (p = 0.027) show significant interactions, indicating that the combined effect of these factors 

is critical to achieving optimal compressive strength. For instance, choosing the right water-cement ratio in 

conjunction with the appropriate type of cement can significantly enhance concrete performance in construction. 

However, other interactions, such as standard sand size and stone gravel (p = 0.126), do not show statistical 

significance. Overall, the ANOVA results demonstrate that the type of cement, water-cement ratio, and their 

interaction are the most impactful factors in construction practice, and further consideration of these elements 

can help improve material quality and structural durability in real-world applications. 

 

4.2 Parameter optimization  

 
The Table 4 presents an analysis of key parameters impacting the compressive strength of concrete, with a focus 

on optimizing the mix design. The goal was to maximize compressive strength, with a target of 44 MPa and a 

lower limit of 19.5 MPa. Optimization was successfully achieved through the adjustment of three critical 
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variables: standard sand size, water-cement ratio, and type of cement. The optimal standard sand size was 

determined to be 20 mm, within the tested range of 16 to 20 mm, suggesting that larger sand particles contribute 

to increased strength. The water-cement ratio was optimized at 0.5, the upper limit of its range (0.4 to 0.5), 

which balanced hydration and minimized excess water that could weaken the mix. The type of cement, 

represented as (-1, 1), was optimized at 1, corresponding to the BUA cement type, which had the most positive 

impact on compressive strength. These adjustments led to a predicted compressive strength of 44.175 MPa, with 

high reliability (R-squared = 99.50%), confirming that optimization did indeed take place and significantly 

improved the strength and quality of the concrete mix design. The predicted values align closely with the 

confidence intervals, further validating the optimization process. 

 

Table 4. Parameter optimization 

  

Response Goal  Lower  Target   

Compressive strength  Maximum  19.5 44  

Variable  Range    

Standard sand size  (16,20)    

Water-cement ratio  (0.4,0.5)    

Type of cement  (-1,1)    

Multiple response prediction      

Variable  Setting     

Standard sand size  20mm    

Water –cement ratio  0.5mm    

Type of cement  1 (BUA)    

Response prediction  Fit  SE Fit 95%C.I 95% Fit 

Compressive strength  44.175 0.558 (42.933,45.417) (41.796,46.554) 

 

Table 5. Model summary 

 

Standard Error(S) R-squared (
2

R ) Adjusted R-Squared(
2

R adj) Predicted R Squared (
2

R  Pred) 

0.175 100.00% 99.97% 99.50% 

 

Table 5 Statistical Summary revealed the standard error of 0.175 indicates the average deviation of the observed 

values from the fitted regression line. This low value suggests that the model fits the data well, with minimal 

error, R-squared (R²): 100.00 this perfect value indicates that 100% of the variance in the compressive strength 

is explained by the model. It suggests that all the factors included in the model are well-represented, Adjusted 

R-squared (R² adj): 99.97%Adjusted R², which accounts for the number of predictors in the model, is also very 

high at 99.97%. This confirms that the model's explanatory power is robust even when considering the number 

of predictors and Predicted R-squared (R² pred): 99.50%, the predicted R² value of 99.50% indicates that the 

model has a high predictive accuracy. This suggests that the model is reliable for predicting the compressive 

strength of concrete for new data sets. 

 

44.77 - 1.888 SS+ 0.1357 CT- 76.58 WCR 

19.642 T C+ 0.2239 SG + 0.00446 S S* CT+ 

6.188 SS* WCR- 0.0594 SS* TC- 0.00729 SS*SG+ 

0.1548 CT* W C R+ 0.02083 CT* TC- 0.003532 CT*SG- 

20.625 W C

Compressive Strength = +

 R* T C- 0.0417 WCR*S G

 

 

The below graph is a normal plot of the standardized effects this illustrate that Factor D (Type of Cement) has 

the strongest positive effect on compressive strength, indicating that the choice of cement type plays a crucial 

role in determining the strength of the concrete mix. This means that selecting the right type of cement, such as 

Dangote or BUA, can significantly enhance the compressive strength of the material. The interaction between 

CD (Water-Cement Ratio × Type of Cement) also shows a significant influence, suggesting that the impact of 

the water-cement ratio on compressive strength is strongly dependent on the type of cement used. In contrast, 

Factor C (Water-Cement Ratio) and interactions like AC (Standard Sand × Water-Cement Ratio) are not 
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statistically significant, indicating that their contributions to compressive strength are minimal or negligible 

under the given experimental conditions. This implies that while the water-cement ratio and sand size are 

important parameters, their effects may not be as pronounced unless paired with other critical factors such as the 

type of cement. Therefore, careful consideration should be given to the choice of cement and its interaction with 

other factors to optimize compressive strength. 

 

 
 

Fig. 1. Normal plot of the standardized effects 

 

 
 

Fig. 2. Pareto chart of the standardized effects 

 

The Pareto Chart visually confirms that Type of Cement (D) and the interaction between Water-Cement Ratio 

and Type of Cement (CD) are the most influential factors affecting compressive strength. The chart effectively 

ranks the factors based on their impact, showing that optimizing the type of cement and its interaction with the 

water-cement ratio is crucial for achieving significant improvements in compressive strength. Less significant 
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factors, such as Standard Sand (A), Curing Time (B), and their interactions, are not statistically significant, 

meaning their effects on compressive strength are minimal. The Pareto chart, an essential tool in quality 

improvement and experimental analysis, provides a clear visual summary of which factors require the most 

focus. Based on the chart, attention should be primarily directed toward selecting the appropriate type of cement 

and managing the water-cement ratio to optimize compressive strength, while other factors may be considered 

but are unlikely to lead to substantial changes. 

 

 
 

Fig. 3. Contour plot of compressive strength Vs. curing time, standard sand 

 

The contour plot of "Compressive Strength vs Curing Time, Standard Sand" provides a visual representation of 

how compressive strength varies with different levels of curing time and the amount of standard sand used in the 

concrete mix. The x-axis represents the amount of standard sand, ranging from 16mm to 20mm, while the y-axis 

indicates the curing time, ranging from 7 days to 28 days. The colour gradient in the plot, from blue to green to 

dark green, indicates varying levels of compressive strength, with blue representing lower strength and dark 

green representing higher strength. 

 

From the plot, it's clear that compressive strength increases as both curing time and the amount of standard sand 

increase. The contour lines are relatively parallel and slope upwards from left to right, signifying a strong and 

positive correlation between these factors and compressive strength. Specifically, at lower sand levels (around 

16mm) and shorter curing times (7 days), the compressive strength is significantly lower (blue area) but 

increases markedly (transitioning through green shades) as either the curing time or sand amount increases. 

 

The steep gradient suggests that even a small increase in either curing time or sand content can lead to a 

noticeable improvement in compressive strength, especially when both factors are at higher levels (28 days and 

20 mm, respectively), where the maximum compressive strength is observed. This implies that for optimizing 

concrete strength, extending the curing period and using a larger amount of standard sand are effective 

strategies.  

 

The plot clearly indicates that curing time has a slightly more dominant effect on compressive strength than the 

amount of standard sand, as evidenced by the more pronounced vertical gradient. This suggests that while both 

factors are important, ensuring sufficient curing time may be more critical in achieving higher compressive 

strength in concrete mixes. 

 

The contour plot illustrates the relationship between compressive strength, the water-cement ratio, and the 

quantity of standard sand in the concrete mix. Lower water-cement ratios (closer to 0.4) generally correspond to 

higher compressive strengths, as indicated by the darker green regions, while higher ratios lead to lower 
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strengths. The amount of standard sand also positively impacts compressive strength, particularly at lower 

water-cement ratios, with the plot showing a significant increase in strength as sand content rises from 16 mm to 

20 mm. This interaction is more pronounced at lower water-cement ratios, suggesting that increasing sand 

content has a stronger effect on compressive strength when less water is used. The plot underscores the 

importance of balancing the water-cement ratio and sand content to optimize compressive strength in concrete, 

making it a valuable tool for guiding concrete mix formulations in construction. By carefully selecting these 

factors, one can achieve the desired compressive strength, highlighting the practical implications of this analysis 

in ensuring the structural integrity of concrete. 

 

 
 

Fig. 4. Contour plot of compressive strength Vs water cement-ratio, standard sand 

 

 
 

Fig. 5. Contour plot of compressive strength VS stone gravel, curing time 

 

The contour plot illustrates the relationship between compressive strength, stone gravel size, and curing time in 

the concrete mix. The plot shows that longer curing times generally lead to higher compressive strengths, as 

indicated by the darker green regions, especially at curing times closer to 28 days. The size of the stone gravel 
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also impacts compressive strength, with larger gravel sizes (closer to 20 mm) contributing to higher strength 

levels, particularly when combined with longer curing times. The interaction between these two factors is 

evident, as the effect of curing time on compressive strength becomes more pronounced with larger gravel sizes. 

In contrast, at shorter curing times and smaller gravel sizes, the compressive strength is significantly lower, as 

shown by the lighter green and blue areas. This suggests that for optimal compressive strength, both larger 

gravel sizes and extended curing times are beneficial. The plot highlights the importance of balancing these 

factors to achieve the desired concrete strength, making it a practical tool for guiding decisions in concrete mix 

design, particularly in ensuring that the curing process and gravel size are optimized for structural integrity. 

 

5 Summary  

 
This study focused on optimizing experimental parameters in the building construction process to enhance 

structural integrity, minimize cracks, and reduce the risk of building collapses. Through the application of 

fractional factorial design and response surface methodology (RSM), the study aimed to identify the optimal 

conditions for achieving maximum compressive strength in concrete, among the factors tested, the type of 

cement had the most substantial impact on compressive strength, followed by the water-cement ratio, standard 

sand size, curing time, and stone gravel size and Significant interactions were identified, particularly between 

standard sand and water-cement ratio, curing time and type of cement, and water-cement ratio with type of 

cement also the model effectively captures the complex interactions and impacts of various factors on 

compressive strength. The insights from this model can guide targeted improvements in material selection and 

mix design, significantly enhancing the structural integrity and durability of building materials lastly The 

optimal settings for achieving maximum compressive strength were identified as: Standard Sand: 20 mm Water-

Cement Ratio: 0.5 Type of Cement:BUA Stone Gravel: 20 mm and Curing Time: 28 days Under these 

conditions, the predicted compressive strength was approximately 44.175 MPa, demonstrating the effectiveness 

of the optimized parameters in enhancing concrete strength. 

 

6 Conclusion 

 
This study effectively identifies and optimizes the critical factors affecting compressive strength in concrete. Its 

show the Effectiveness of Fractional Factorial Design and RSM in identifying and optimizing the key factors 

affecting concrete compressive strength. The high R-squared values (99.50% predicted) and significant F-values 

confirm the robustness and reliability of the model. The critical Factor Type of cement, water-cement ratio, and 

standard sand size were identified as the most influential factors. Specifically, using BUA cement and 

maintaining a water-cement ratio of 0.5 were critical for achieving optimal compressive strength. The findings 

offer valuable insights for enhancing construction materials’ quality, safety, and efficiency, contributing 

significantly to the field of civil engineering. 
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