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Abstract: The energy of a graph is the sum of absolute values of its eigenvalues. The nullity of a graph is the
algebraic multiplicity of number zero in its spectrum. Empirical facts indicate that graph energy decreases
with increasing nullity, but proving this property is difficult. In this paper, a method is elaborated by means
of which the effect of nullity on graph energy can be quantitatively estimated.
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1. Introduction

T he concept of graph energy was introduced in 1978 [1], as a kind of generalization of the HMO total
π-electron energy [2]. After a twenty-years period of silence, graph energy became a popular topic

of research in chemical graph theory [3], with over than hundred papers published each year [4,5]. Of the
numerous properties established for graph energy, one remains a long-time open problem. Namely, already in
the early days of the study of graph energy and its predecessor total π-electron energy, it was observed that it
somehow decreases with the increasing number of zero eigenvalues in the graph spectrum [2,6].

Let G be a (molecular) graph, possessing n vertices. Let λ1, λ2 . . . , λn be the eigenvalues of the
(0, 1)-adjacency matrix of G, forming the spectrum of G. Then the energy of G is defined as [1,3]:

E = E(G) =
n

∑
i=1
|λi|,

whereas its nullity, denoted by η = η(G), is equal to the number of zero eigenvalues (= the algebraic
multiplicity of the number zero in the graph spectrum). Then the above mentioned regularity can be formally
stated as follows.

Conjecture 1. Let G and G′ be two structurally similar graphs. Let η(G) < η(G′). Then E(G) > E(G′).

The problem with this conjecture is that the meaning of “structurally similar graphs” is not clear and
cannot be rigorously defined. Earlier attempts to justify its validity were based on designing approximate
expression for E(G), containing the term η(G) [6–9], or by constructing a suitably chosen example for the
graphs G, G′ [10].

It this paper we elaborate a general method for quantifying the dependence of graph energy on nullity, in
which the usage of the “structurally similar graph” G′ is avoided.

2. Effect of nullity on the energy of a non-singular graph

Let G be a (molecular) graph as defined above, and assume that it is non-singular, i.e., that it has no zero
eigenvalues, η(G) = 0. Let its characteristic polynomial be

φ(G, λ) =
n

∑
k=0

ck λn−k =
n

∏
i=1

(λ− λi),
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and recall that

c0 = 1 , c1 =
n

∑
i=1

λi = 0, (1)

and
ck = ∑

1≤i1<i2<···<ik≤n
λi1 λi2 · · · λik , (2)

for k = 2, ..., n. In particular,

cn =
n

∏
i=1

λi 6= 0.

Throughout this paper, since we are mainly interested in molecular graphs, it will be assumed that n is
even, and that

λ1 ≥ λ2 ≥ · · · λn/2 > 0 > λn/2+1 ≥ λn/2+2 ≥ · · · ≥ λn .

If so, then c2 < 0, c4 > 0, c6 < 0, c8 > 0, . . . , i.e.,

(−1)k c2k > 0 for all k = 0, 1, 2, . . . , n/2, (3)

and
n/2−1

∑
k=0

(−1)k c2k xn−2k > 0 for all x ≥ 0 . (4)

The coefficients ck are the structural parameters of the graph G on which its energy depends. It is known
that [11–14]:

E(G) = Re

 2
π

∞∫
0

ln
n

∑
k=0

ck (ix)−k dx

 =
2
π

∞∫
0

ln

∣∣∣∣∣ n

∑
k=0

ck (ix)−k

∣∣∣∣∣ dx, (5)

where i =
√
−1 and Re indicates the real part of a complex number. Recall that for any complex number z,

|z| ≥ Re(z).
Our approach is based on the following. Instead of looking for a graph G′ that would be “structurally

similar” to G, we construct a quasi-spectrum, consisting of the numbers λ′1, λ′2, . . . , λ′n, that would be as similar
as possible to the true spectrum of G, but that would contain a single zero element. Let λ′k 6= 0 for k =

1, 2, . . . , n− 1 and λ′n = 0, which is equivalent to the condition η(G′) = 1. Then, in analogy to Equations (1)
and (2), we define

c′0 = 1 , c′1 =
n

∑
i=1

λ′i = 0,

and
c′k = ∑

1≤i1<i2<···<ik≤n
λ′i1 λ′i2 · · · λ

′
ik ,

for k = 2, ..., n, implying that

c′n =
n

∏
i=1

λ′i = 0 .

Bearing in mind Equation (5), we now construct an auxiliary quantity [15,16]:

E′(G) =
2
π

∞∫
0

ln

∣∣∣∣∣ n

∑
k=0

c′k (ix)
−k

∣∣∣∣∣ dx .

By requiring that c′k = ck for k = 1, 2, . . . , n− 1, it immediately follows that

E′(G) =
2
π

∞∫
0

ln

∣∣∣∣∣n−1

∑
k=0

ck (ix)−k

∣∣∣∣∣ dx .
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Thus, the quantity E′(G) can be calculated from the coefficients of the characteristic polynomial of the
graph G.

The difference E(G)− E′(G) can be understood as the effect of a single zero eigenvalue, i.e., nullity η = 1,
on the energy of a non-singular graph G.

Using the Coulson–Jacobs formula [11,12], we get

E(G)− E′(G) = Re

 2
π

∞∫
0

ln

n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

dx

 =
2
π

∞∫
0

ln

∣∣∣∣∣∣∣∣∣
n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

∣∣∣∣∣∣∣∣∣ dx,

i.e.,

E(G)− E′(G) =
2
π

∞∫
0

ln
∣∣∣∣ φ(G, ix)
φ(G, ix)− cn

∣∣∣∣ dx. (6)

From Equation (6) it follows that E(G)− E′(G) > 0, in agreement with Conjecture 1. In order to see this,
note that

n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

=
A(x)− i B(x) + (−1)n/2 cn

A(x)− i B(x)
,

where A(x) =
n/2−1

∑
k=0

(−1)k c2k xn−2k and B(x) =
n/2−1

∑
k=0

(−1)k c2k+1 xn−2k+1 . Then

Re


n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

 =
A(x)2 + B(x)2 + (−1)n/2 c)n

A(x)2 + B(x)2 = 1 +
(−1)n/2 cn A(x)
A(x)2 + B(x)2 ,

which by relations (3) and (4) is greater than unity for all values of x ∈ [0,+∞). Therefore,

E(G)− E′(G) =
2
π

∞∫
0

ln

∣∣∣∣∣∣∣∣∣
n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

∣∣∣∣∣∣∣∣∣ dx ≥ 2
π

∞∫
0

ln Re


n
∑

k=0
ck (ix)n−k

n−1
∑

k=0
ck (ix)n−k

 dx

=
2
π

∞∫
0

ln

[
1 +

(−1)n/2 cn A(x)
A(x)2 + B(x)2

]
dx > 0 .

Formula (6) makes it possible to directly compute the effect of nullity in the special case of η(G) = 0 and
η(G′) = 1, using only the spectrum of the graph G. Numerical examples will be communicated at some later
moment.

A same kind of consideration for the case η(G) = 0 and η(G′) = 2, leads to

E(G)− E′(G) =
2
π

∞∫
0

ln

∣∣∣∣∣∣∣∣∣
n
∑

k=0
ck (ix)n−k

n−2
∑

k=0
ck (ix)n−k

∣∣∣∣∣∣∣∣∣ dx,

i.e.,

E(G)− E′(G) =
2
π

∞∫
0

ln
∣∣∣∣ φ(G, ix)
φ(G, ix)− cn − cn−1 ix

∣∣∣∣ dx .
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Other, more complicated cases can be treated in an analogous manner.
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