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Abstract: The Kolakoski sequence S is the unique element of {1, 2}ω starting with 1 and coinciding with its
own run length encoding. We use the parity of the lengths of particular subclasses of initial words of S as a
unifying tool to address the links between the main open questions - recurrence, mirror/reversal invariance
and asymptotic density of digits. In particular we prove that recurrence implies reversal invariance, and give
sufficient conditions which would imply that the density of 1s is 1

2 .
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1. Introduction

I n 1939 Oldenburger considered, within the context of symbolic dynamics, a sequence having the property
of coinciding with its own run length encoding [1]. If we choose the alphabet {1, 2} there are two such

sequences, the second of which being simply the first one without the initial element. The two sequences start
as

1221121221 . . . ,

and
2211212212 ⋅ ⋅ ⋅ ⋅

In 1965 Kolakoski rediscovered the sequence [2], and it was easily established that it is not eventually
periodic. Besides this, very little is known about the sequence. In particular, it is still not known whether it is
recurrent, whether it has basic symmetry properties (mirror/reversal invariance) and whether the asymptotic
density of 1s exists and equals 1

2 , a conjecture formulated by Keane [3]. A sharp bound (0.5 ± 0.00084) for the
density of 1s has been provided [4]. Concerning other properties of the sequence, it has been proved that
it is cube-free, which is a particular case of a more general result on repetitions [5]. Moreover, a measure
conjectured to completely describe the densities of all subwords of the sequence has been introduced, and the
conjecture has been proved under fairly natural additional hypotheses [6]. Recursive formulas for the n-th
element of the sequence are also known [7,8].

The sequence is relevant for applications concerning optical properties of aperiodic structures [9–11], but
probably its most interesting features are linked to the unique combination of the simplicity of its definition
and the difficulty of the problems it raises.

The sequence is nowadays indexed as A000002 in Sloane’s online Encyclopedia of Integer Sequences.
In this paper we study the open problems - namely recurrence, mirror and reversal invariance and

asymptotic frequency of digits - trying to identify a unifying concept, i.e. the parity of the integrals (the
converse transform of run length encoding) of subwords of the sequence. After introducing some notation and
terminology in Section 2, the main open problems are reformulated in terms of parity of integrals of prefixes
in Section 3, while in Section 4 we prove some results, including that recurrence implies reversal invariance,
and provide sufficient conditions implying that the asymptotic frequency of 1s is 1

2 . In Section 5 we describe
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a constructive procedure showing the existence of arbitrarily long recurrent subwords and identify places
where they must occur in the structure of S. Finally, in Section 6 we formulate some conjectures arising from
the proposed approach.

We tried to make the paper as self-contained as possible. For this reason we included the proof of some
facts (covered in Lemmas 1, 3, 8, 9, 10 and 11) already known, although generally not presented, in the cited
literature, exactly in the form proposed herein. In this way we could also “optimize" their exact formulation
for our aims.

2. Notation and preliminary definitions

Let A∗ be the set of finite words on the alphabet

A = {1, 2} ,

and A∞ the set A∗ ∪ Aω of all finite or infinite words on A. We let ε denote the empty word and we set
A+ ∶= A∗ ∖ {ε}.

The concatenation of the finite word w = a1a2 . . . an and the (possibly infinite) word v = b1b2 . . . , i.e., the
word a1a2 . . . anb1b2 . . . , is written as wv. The sets A∗ and A+ have respectively the structure of a free monoid
and a free semigroup with the internal operation defined as the concatenation of words.

For every w ∈ A+, by w̃ we mean the mirror word of w, i.e. the transform of w under the substitutions

1→ 2,

2→ 1.

We also set ε̃ ∶= ε. If w = a1 . . . an is a word in A+, we set Σw ∶= Σn
i=1ai and ←Ðw ∶= anan−1 . . . a1, calling the former

sum of w and the latter inverse word of w (we set ←Ðε ∶= ε). We indicate by ∣w∣ the length of w, i.e., the positive
integer n (we set ∣ε∣ ∶= 0).

We say that v ∈ A+ is a subword of w = a1a2 ⋅ ⋅ ⋅ ∈ A∞ if there exist a positive integer k and a non-negative
integer h such that v = akak+1 . . . ak+h. In the following it will be handy to have a term concisely referring to
a particular occurrence of a subword. Therefore, we call the pair (v, k) a subrow of w and say that (v, k) is an
occurrence of v in w, and that two subrows (v1, k) and (v2, h) coincide as subwords if v1 = v2. When we want
to emphasize the initial and final elements of the subrow akak+1 . . . ak+h, we write it as wk,k+h. To lighten the
notation, if there is no possibility of confusion, we may use the same symbol for the subrow (v, k) and the
subword v. We let SR(S) denote the set of all the finite subrows of S.

We say that v is a prefix of a (possibly infinite) word w = a1a2 . . . if there is a positive integer k such that
v = a1 . . . ak. We say that v is a suffix of a finite word w = a1 . . . an if there is a positive integer k < n such that
v = an−kan−k+1 . . . an.

Let us define a map from A∞ to itself by means of alternating substitution rules. Specifically, for every
nonempty w ∈ A∞ we define the following substitution rules:

⎧⎪⎪⎨⎪⎪⎩

1→ 1 2→ 11 for the elements having odd index in w,

1→ 2 2→ 22 for the elements having even index in w.
(1)

We let w−1 denote the transform of w under the substitutions (1) 1. We also set ε−1 ∶= ε. For every w ∈ A∞, we
define inductively:

⎧⎪⎪⎨⎪⎪⎩

w0 ∶= w,

w−k ∶= (w−(k−1))−1, for every integer k > 1.
(2)

1 The reason of this choice is that the converse transformation, which we introduce later, is usually denoted derivative-like, with positive
integers as exponents. Moreover it will come handy, compared to something more cumbersome like I(⋅), when we will have to write
relatively long concatenations of words which are iterations of the integration map.
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We refer to the (⋅)−1 map as the integration map.
Alternating substitution rules are quite well investigated and have also been generalized [12]. Relative

results have been used specifically to study the Kolakoski sequence. It was indeed proved that, even if the
rules (1) are very close to the simplest possible case of alternating substitution, its fixed point (i.e., Kolakoski
sequence) cannot be obtained by iteration of a simple substitution [13].

The existence and uniqueness of the Kolakoski sequence are established by means of the following
Lemma.

Lemma 1. There exists a unique element S of {1, 2}ω such that S = S−1. Moreover, indicating the n-th element of S by
sn, for every positive integer n there exists a positive integer h such that sn is the n-th element of (12)−k for every integer
k such that k ≥ h.

Proof. Take a finite word u such that
u−1 = uv1,

with v1 ≠ ε. Integrating both sides of the previous equality one gets

u−2 = (uv1)−1 = u−1v2 = uv1v2,

where v2 equals v−1
1 or ṽ−1

1 according to ∣u∣ being respectively even or odd. Iterating the argument it follows
that, for every non-negative integer k,

u−k = uv1 . . . vk, (3)

where, for 2 ≤ h ≤ k, vh = v−1
h−1 or vh = ṽ−1

h−1 according to ∣uv1 . . . vh−2∣ being respectively even or odd. Since
the words vi are nonempty, an arbitrarily long prefix of u−k remains unaltered by further integrations. More
precisely, if we write u−k as

u−k = ak
1ak

2 . . . ak
∣u−k ∣

,

(where ak
i ∈ {1, 2}), for every positive integer n there is h such that aj1

n = aj2
n for every j1, j2 ≥ h. Hence we can

define the limit sequence S of the right hand side of (3) for k →∞, which clearly verifies S = S−1. Taking u = 12
one gets the existence of S. As for the uniqueness, it follows immediately observing that the only word of
length 2 which is a prefix of its integral is 12.

Definition 2. The sequence S is called the Kolakoski sequence.

By the arbitrariness of the prefix u in the previous proof, we easily get by induction the following lemma:

Lemma 3. If p is a prefix of S, such is p−k for every non-negative integer k.

We now want to adapt the previous definition of integral so that it applies nicely to subrows of S, meaning
that we can identify which subrow of S can be naturally seen as the integral of a given subrow. We thus want
a version of the integration map which maps SR(S) to itself (while (⋅)−1 maps A∞ to itself). Therefore we
introduce the following definition:

Definition 4. Let w be a subrow of S and u the prefix such that S = uw . . . . We define the S-integral of the
subrow w as the subrow w−1

S ∶= Sh,k where

h = ∣u−1∣ + 1 and k = ∣u−1∣ + ∣w−1∣.

We also define inductively w−n
S ∶= (w−n+1

S )−1
S .

Remark 1. Since (⋅)−1 is a non-morphic map, the S-integral of a subrow w does not coincide always with its
integral as a subword, defined by means of the substitution rules (1). Indeed, if uw is a prefix of S, considering
w−1

S as a subword, we have
w−1

S = w−1,
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if ∣u∣ is even and
w−1

S = w̃−1,

if ∣u∣ is odd. Notice also that in general, for a subrow w which is not a prefix and for k large, w−k and w−k
S are

different words which are not linked in any trivial way.

Next we want to define the property of a subrow of having S-integrals of even length up to a certain order,
starting from the order 0 (that is, from the length of the subrow itself).

More precisely, we introduce the following definition:

Definition 5. We say that the subrow w is k-regular if ∣w−h
S ∣ is even for 0 ≤ h ≤ k. We say that a subrow is

k-normal if it is k-regular but not (k + 1)-regular. We say that a subrow is ∞-regular if it is k-regular for every
non-negative integer k.

Notice that in case w is a prefix, k-regularity reduces to requiring that ∣w−h∣ is even for 0 ≤ h ≤ k.
We indicate by k-R the subset of SR(S) consisting of all the k-regular subrows of S, by k-N the subset

of SR(S) consisting of all the k-normal subrows of S and by ∞-R the subset of SR(S) consisting of all the
∞-regular subrows of S. It is easily proved the following lemma:

Lemma 6. 1. k ≥ h Ô⇒ k-R ⊆ h-R.
2. For every non-negative integer k, k-N⊂ k-R.
3. k ≠ h Ô⇒ k-N ∩ h-N= ∅.
4. For every non-negative integer k, w ∈ k-NÔ⇒ w ∉ ∞-R.
5. For positive integers a < b < c, Sa,b, S(b+1),c ∈ k-R Ô⇒ Sa,c ∈ k-R.
6. For positive integers a < b < c, Sa,b, S(b+1),c ∈ k-N Ô⇒ Sa,c ∈ (k + 1)-R.

Next we want to introduce the converse operation of integration, i.e., the so called derivative for words in
A∗, which, roughly speaking, coincides with a run-length counting operation. However, we should take care
to avoid the ambiguity arising when a subword starts or ends with a single digit not belonging to a pair of
equal elements of the alphabet, as in that case we cannot know the length of its run without looking outside
the subword. For this reason it is usual [6] to cut off those single digits, when they are present.

More precisely, for every w = a1 . . . an ∈ A+ we define w′ as the unique finite word such that (w′)−1 equals

a1 . . . an if a1 = a2 and an−1 = an,

a2 . . . an if a1 ≠ a2 and an−1 = an,

a1 . . . an−1 if a1 = a2 and an−1 ≠ an,

a2 . . . an−1 if a1 = a2 and an−1 = an.

We also set 1′ = 2′ = ε′ ∶= ε, so that derivatives of every order exist for all elements of A∗; notice that this also
implies (12)′ = (21)′ = ε. We also define inductively w(n) ∶= (w(n−1))′. Finally, we define the derivative of an
infinite word v = a1a2 ⋅ ⋅ ⋅ ∈ Aω, not ultimately constant, as the word whose m-th element is the m-th element
of (a1 . . . an)′ for all sufficiently large n. It is easily seen that this m-th element stays the same when n diverges
unless the sequence is ultimately constant (in which case the derivative of the sequence is not defined).

Adopting the usual convention, we indicate by Ck the set of words which belong to A∞ together with
their first k derivatives, and by C∞ the set ⋂k∈N Ck.

Similarly to what done before for integrals, we want now to adapt the definition of derivative so that it
works for subrows. Therefore we introduce the following definition:

Definition 7. Let w be a subrow of S. If there exists a subrow v such that v−1
S = w, we set w′

S ∶= v. We call v the
S-derivative of w.

We also define inductively w(n)S ∶= (w(n−1)
S )′S, of course if w(k)s admits an S-derivative for every k ≤ n.

Remark 2. Notice that not every subrow has an S-derivative. For instance there is no subrow u such that
s3s4 = u−1

S .
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The following Lemma characterizes the subrows admitting an S-derivative.

Lemma 8. Let n and m be two positive integers such that n < m. If w = sn . . . sm is a subrow of S, it admits an
S-derivative if and only if sn−1 ≠ sn and sm ≠ sm+1. Moreover, if w′

S = sh . . . sh+k then h ≤ n and h + k ≤ m.

Proof. Suppose that w admits an S-derivative. Then w is the transform under substitutions (1) (or the mirror
of the transform under (1)) of another subrow v = sh . . . sj (j ≥ h). This means in particular that (sj)−1

S = sm or
(sj)−1

S = sm−1sm, so that (sj+1)−1
S = sm+1 or (sj+1)−1

S = sm+1sm+2. Since j and j+ 1 cannot be both even or both odd,
it follows that sm ≠ sm+1. The proof proceeds analogously for sn if sn−1 exists, otherwise (i.e., if w is a prefix),
the thesis is vacuously true.

Conversely, suppose that sn−1 ≠ sn and sm ≠ sm+1. Then, by definition of S, w is the transform under (1)
(or the mirror of the transform under (1)) of some subrow v.

Finally, if w′
S = sh . . . sk, the inequalities h ≤ n and h + k ≤ m follow from the fact that, for every word w,

∣w−1∣ ≥ ∣w∣.

Since w′ is always a subword of w′
S, the following Lemma is a consequence of the previous one:

Lemma 9. If w = snsn+1 . . . sn+m is a subrow of S with nonempty derivative, there exists h and k such that w′ =
shsh+1 . . . sh+k.

The previous Lemma immediately implies that:

Lemma 10. If w is a subword of S, then w ∈ C∞.

Finally we define formally what is meant by asymptotic frequency of digits. Indicating by ∣v∣x the number
of occurrences of the digit x (x ∈ {1, 2}) in v ∈ A+, and by fv(x) the frequency of x in v, i.e. the number ∣v∣x

∣v∣ , we
set

f∞(x) ∶= lim
n→∞

∣S1,n∣x
n

,

whether the limit exists. The most famous conjecture concerning Kolakoski sequence is Keane’s conjecture [3]:

f∞(1) exists and equals
1
2

.

3. Reformulation of the problems

In this section we reformulate some open questions concerning S in terms of regularity/normality of
subrows. Let us recall that, according to (2), elements with even (odd) index in S are mapped by the integration
in 2 or 22 (1 or 11). We use systematically this fact (usually without mentioning it explicitly) throughout.

In the following we will need a (rough) estimate of the relative length of w, w′ and w−1 when w is a
subword of S, ensuring in particular that, for every finite word w with more than one element,

∣w(k)∣ → 0 if k diverges, (4)

and
∣w−k∣ = ∣w−k

S ∣ → ∞ if k diverges, (5)

and that for every positive integer k,
∣w(k)∣ → ∞ if ∣w∣ diverges. (6)

This is obtained observing that ∣w−1∣ = ∑w, and that the maximum and minimum density of 2s in a C∞ word
are achieved respectively by 11211 and 22122. From this (recalling that the derivative cuts off single digits at
both ends) the following Lemma is easily proved.
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Lemma 11. If w is a subrow of S and ∣w∣ ≥ 3, then

6
5
∣w∣ ≤ ∣w−1∣ = ∣w−1

S ∣ ≤
9
5
∣w∣,

5
9
∣w∣ ≤ ∣w′

S∣ ≤
5
6
∣w∣ (if w admits an S-derivative),

and
1
4
∣w∣ ≤ ∣w′∣ ≤ 5

6
∣w∣.

The asymptotic behaviors (4), (5) and (6) immediately follow from Lemma 11 (notice that, if ∣w∣ = 2,
∣(wS)−2∣ ≥ 3).

We add some definitions: a sequence w ∈ Aω is called recurrent if every finite subword of it is repeated (and
therefore every finite subword is repeated infinitely many times). It is called uniformly recurrent if it is recurrent
and the gaps between consecutive occurrences of every given finite subword are bounded. Moreover, w is
called mirror invariant (reversal invariant) if the set of its finite subwords is closed under the mirror operation:
v → ṽ (inverse operation: v →←Ðv ).

It is a well known result that, for S, mirror invariance implies recurrence [6]. The converse implication is
not trivial, and sufficient conditions for it to hold are provided in Theorem 17. For this, though, we need some
preliminary results.

The links between recurrence, mirror invariance and regularity/normality of subrows are established in
the following Lemmas.

Lemma 12. S is recurrent if and only if for every positive integer k there is a k-regular prefix of S.

Proof. Suppose that we can find a k-regular prefix w of S for every non-negative integer k.
First of all notice that w ∈ k-R implies that ∣w∣ > 2, which in turn implies that ∣w−a∣ is strictly larger than

∣w−b∣ for every choice a, b of positive integers such that a > b (as there are no runs of consecutive 1s longer than
2 in w). From w ∈ k-R it follows that (as soon as k ≥ 1) ∣w∣ and ∣w−1∣ are even prefixes of S, so that s∣w∣+1 and
s∣w−1∣+1 are both odd-indexed elements of S. Then from Lemma 3, recalling the substitution rules (1), it follows
that w−11 and w−212 are both prefixes for S.

Integrating further we find a prefix of the form

(w−212)−k+2 = w−k(12)−k+2
S = w−k(12)−k+2, (7)

where the last equality is again due to the fact that w ∈ k-R. By Lemma 3 the last factor in the right hand side
of (7) coincides with a prefix of S. Recalling (5), this prefix is arbitrarily long if k is large enough, which is
sufficient to conclude that S is recurrent.

Conversely, suppose that S is recurrent. This implies, in particular, that arbitrarily long prefixes of S are
repeated infinitely many times, thus for every positive integer N there is a prefix w and a prefix of the form
wvw such that both ∣w∣ and ∣v∣ are larger than N. By suitably selecting w, we can assume that the last element
of w is not equal to the first element of v. Moreover, since w starts with 12211, by Lemma 10 the last element
of v has to be different from the first element of w, as otherwise vw ∉ C∞. Therefore, by Lemma 8, there exists
a nonempty word u1 such that, setting p1 ∶= (wS)′, the word p1u1 p1 is also a prefix for S.

We then define recursively
pi+1 ∶= (S1,∣pi ∣

)′S
and

ui+1 ∶= (ui)′S
in case s∣pi ∣

≠ s∣pi ∣+1. If instead s∣pi ∣
= s∣pi ∣+1 we replace, in the definition of pi+1 and ui+1, pi with the largest of

its prefixes admitting an S-derivative and ui with the smallest subrow having ui as a suffix and admitting an
S-derivative.
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Since ∣v∣ can be arbitrarily large and recalling (6), we have that

pkuk pk

is a prefix of S (with uk ≠ ε) for every k such that ∣pk∣ ≥ 2. Therefore pk starts with 1 for every k such that
∣pk∣ ≥ 2. Since pk also follows the prefix pkuk in S, this means, recalling the substitution rules (1), that the first
k − 1 integrals of the prefix pkuk have even length. By Lemma 11 it follows that k →∞ when ∣w∣ → ∞.

Lemma 13. S is mirror invariant if and only if for every positive integer n there is a k-normal prefix of S with k > n.

Proof. Suppose that w is a k-normal prefix of S. As seen in the proof of Lemma 12, w−h(12)−h+2 is also a prefix
for S for every h ≤ k + 1. Since ∣w−k−1∣ is odd, integrating further and recalling Lemma 3 one gets the prefix
w−k−2ṽ, where v = (12)−k. By Lemma 1, v is also a prefix of S, and ∣v∣ is arbitrarily large if k is large enough.
Since concatenation commutes with the mirror operation (that is: ũv = ũṽ for every u, v ∈ A+), this is sufficient
to conclude that S is mirror invariant.

Conversely, suppose that S is mirror invariant and let w be a prefix of S such that its last element is not
equal to the following element of S. By mirror invariance there is a prefix of the form wvw̃. Let us define the
subwords pn and un as done in the previous proof, and let n̄ be the largest integer for which ∣pn∣ ≥ 2. Since
S-derivatives of mirror words coincide as subwords, there are prefixes of the form

pnun pn

with un nonempty for every positive integer n ≤ n̄ (notice that this means that S is recurrent). As pn is a prefix of
w and so starts with 1 for every n ≤ n̄, (6) ensures that the prefix pnun is k-regular for arbitrarily large positive
integers k if ∣w∣ and ∣v∣ are chosen large enough. Moreover, since w̃ starts with 2 and (p1u1 p1)−1 = wvw̃ by
hypothesis, ∣p1u1∣ has to be odd, and therefore the prefix pn̄un̄ is (n̄ − 2)-normal, where n̄ − 2 can be arbitrarily
large if ∣w∣ is chosen large enough.

It is known that mirror invariance is equivalent to: every C∞ finite word occurs in S [6]. One implication
is obvious, while the other (whose proof was left to the reader in [6]) easily follows from the fact that mirror
invariance implies that, if w does not occur in S, neither does w′. This result and Lemma 13 mean that:

Lemma 14. Every C∞ word is a subword of S if and only if for every positive integer n there is a k-normal prefix of S
with k > n.

Concerning uniform recurrence, we have the following lemma:

Lemma 15. S is uniformly recurrent if and only if, for every positive integer n, S can be written as an infinite
concatenation of k-regular subrows of bounded length with k > n.

Proof. Suppose that, for every positive integer N, there exists a sequence of subwords wi (i ∈ N) and a positive
integer M such that ∣wi∣ < M for every i and

S = w1w2 . . . , (8)

with every wi ∈ k-R and k > N. Then integrating (8) k times yields

S = w−k
1 w−k

2 . . . .

Since ∣w−h
i ∣ is even for every h ≤ k, the word (12)−k+2 is a prefix of w−k

i for every i ≥ 2, and by Lemma 1 it is also

a prefix of S. Since, by Lemma 11, ∣w−k
i ∣ < M ( 9

5)
k
, it follows that S is uniformly recurrent.

Conversely, suppose that S is uniformly recurrent. Then, for every prefix w, S can be written as

S = wu1wu2w . . . , (9)
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with 2 < ∣ui∣ < M for every i for some M > 0. We can assume that w ends with 11 or 22, so that its last element is
not equal to the first element of ui for every i. Since w starts with 12211, every ui has to end with 2, otherwise
a subword which is not C∞ would occur in S, which is not possible by Lemma 10. By Lemma 8 we then have

S = w′
S(u1)′Sw′

S(u2)′Sw′
S . . . .

Taking w long enough and defining the subwords pi (i = 1, . . . , k) as in the proof of Lemmas 12 and 13 and the
subrows uj

i (j = 1, 2, . . . ) accordingly, we can iterate k times the argument, so as to obtain

S = pku1
k pku2

k pk . . . .

Since M can be chosen arbitrarily large (by simply neglecting a suitable number of occurrences of w in S if
needed), the limit behaviour (6) means that ∣uj

k∣ can be made nonempty for every positive integer j and for
arbitrarily large k. Therefore, for every positive integer n and for arbitrarily large k we can find prefixes of the
form

pku1
k . . . pkun

k ,

and noticing that pi begins with 1 for every positive integer i < k, it follows that these prefixes are (k−1)-regular.
Then, by Lemma 6, so is every subrow Sa,a+b where a = ∣pkuh

k ∣ + 1 and b = ∣pkuh+1
k ∣ (h = 1, 2, . . . , k − 1). Recalling

the definition of pi and uj
i , and that differentiation cannot increase the length of subrows, the inequalities

∣pk∣ ≤ ∣w∣ and ∣uj
k∣ ≤ ∣w∣ + M follow, so that each subrow of type pkuj

k has length not larger than 2∣w∣ + M, which
concludes the proof.

Remark 3. Lemmas 12, 13, 14 and 15 can be straightforwardly adapted to generalized Kolakoski sequences
defined over binary alphabets {m, n} other than A if we define analogously the concepts of regularity and
normality of subrows.

On generalized Kolakoski words we mention the works by Sing [10,14] and, in an interesting but slightly
different direction compared to typical Kolakoski literature, by Shen [15].

4. Main results

Let us start by observing that the existence of an ∞-regular prefix of S would have strong consequences
on its structure and properties, as S would then be recurrent and would have a rigidly fractal structure.

More precisely, we establish the following result:

Theorem 16. Suppose that S has an ∞-regular prefix w and let k be a positive integer large enough so that ∣(12)−k+2∣ >
∣w∣. Then, for every positive integer n, S has a prefix with the following structure:

w−nkw−(n−1)k . . . w−kw. (10)

In particular, S is recurrent.

Proof. Since the prefix w is ∞-regular, there exists a positive integer h̄ such that

w−h(12)−h+2

is also a prefix for every h ≥ h̄. Therefore arbitrarily long prefixes of S are repeated, which is enough to have
recurrence. In particular, if k is such that ∣(12)−k+2∣ > ∣w∣, then, by Lemma 1,

w−kw

is a prefix. Integrating further for k times, and recalling that w ∈ ∞-R, we get the prefix

w−2kw−kw,
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and continuing the integrations for further (n − 2)k times we get (10). Notice that, since w−nk is a prefix for
every n, it has to begin with w−hk for every h < k.

Remark 4. Theorem 16 can be applied to generalized Kolakoski words. Its application to Kolakoski words
over binary alphabets {m, n} in which m and n are both even or both odd (and therefore every prefix of even
length if ∞-regular) immediately implies that those sequences are recurrent, which is a well-known result
already obtained by other means [14].

As already said, it is a known result that if S is mirror invariant, then it is recurrent [6] (notice that Lemmas
12 and 13 immediately imply that). The converse implication is obtained with an additional hypothesis in the
following theorem:

Theorem 17. If S is recurrent and ∞-R= ∅, then S is mirror invariant.

Proof. Suppose that ∞-R= ∅ and that S is recurrent. Then by Lemma 12 there is a strictly increasing sequence
of positive integers kn such that S has a kn-regular prefix wn for every n. Since wn ∉ ∞-R, there is a positive
integer k which is the least integer such that ∣w−k

n ∣ is odd. As seen in the proof of Lemma 12, w−k
n (12)−k+2 is also

a prefix of S, and integrating once more (recalling Lemma 3) we get

S = w−k−1
n

̃(12)−k+1 . . . .

Recalling that (12)−k+1 is also a prefix of S by Lemma 1, and that k can be taken arbitrarily large by suitably
choosing wn, we can conclude.

The implication from reversal invariance to recurrence is a known result holding for all elements of
Aω (for the application to differentiable sequences see [16], where a stronger result is proved, namely that
recurrence of S is implied by the existence of arbitrarily long palindromes). The converse implication is proved
in the following theorem:

Theorem 18. S is recurrent Ô⇒ S is reversal invariant.

Proof. Suppose that S is recurrent. Then, by Lemma 12, for every integer k the sequence S has a k-regular
prefix wk. We have

S = w−2
k 12 . . . , (11)

where it is easily seen that w−2
k must end with 2. Defining v by v2 = w−2

k we can write

S = v212 . . . . (12)

Integrating (12), and recalling that v2 ∈ (k − 2)-R, we have

S = (v2)−1(12)−1 . . . , (13)

and as ∣v2∣ and ∣v212∣ are both even, the 2 appearing as the last element of v2 is transformed by the rules (1) in
the same way as the 2 appearing as the last element of v212. Therefore prefix (v2)−11 can be rewritten as

v−1
←ÐÐÐ
(12)−1.

Proceeding by induction, suppose that the prefix (v2)−h1 can be rewritten as

v−h
←ÐÐÐ
(12)−h. (14)

Integrating h times (12), and recalling that v2 is (k − 2)-regular, we get the prefix

(v2)−h(12)−h. (15)
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Set n ∶= ∣(v2)−h∣. Comparing the prefixes (14) and (15), it follows that, for every integer j such that 0 ≤ j ≤
∣(12)−h∣, the (n − j)th element of (v2)−h is equal to and has always the same parity as the (j + 2)th element of
(12)−h, and therefore is transformed by the rules (1) in the same way. Therefore, since integrating (15) we get
(v2)−h−1(12)−h−1, integrating (14) we must get the prefix

v−h−1
←ÐÐÐÐÐ
(12)−h−1. (16)

Since (12)−k is a prefix of S for every k by Lemma 1, the arbitrariness of k, and thus of h, allows us to
conclude that S is reversal invariant.

A natural question is whether, for a subrow (w, n), the property of being k-regular for large values of k
is compatible with the requirement w ∈ C∞. In fact it is possible to prove more, i.e., that S can be eventually
written as a concatenation of arbitrarily regular subrows. More precisely, we have the following theorem:

Theorem 19. For every non-negative integer n, there exist a finite word un and finite words wi (i = 1, 2 . . . ) such that

S = unw1w2 . . . , (17)

where the subrows wi ∈ k-R for every i and k ≥ n.

Proof. We proceed by induction. Let us suppose that S has the form (17) and that wi ∈ k-R ∀i. Let M be the set
of positive integers im such that wim ∉ (k + 1)-R. Clearly the subrows wim are k-normal. If M is finite, we define
p ∶= max{j ∈ N+ ∶ j ∈ M} and un+1 ∶= unw1 . . . wp so that

S = un+1wp+1wp+2 . . . (p = 1, 2 . . . ),

which is the desired result.
If M is infinite, im is a subsequence of i, so for every positive integer m we can define the words vm ∶=

wim w(im+1) . . . wi(m+1) . Every vm is a concatenation of the k-normal subrow wim , the (possibly empty) word
formed by the i(m+1) − im − 1 words wim+h (h = im + 1 . . . im+1 − 1), which are (k + 1)-regular, and the k-normal
subrow wi(m+1) . Therefore, by Lemma 6, vm ∈ (k + 1)-R for every m, and therefore defining p ∶= min M and the
word un+1 ∶= unw1w2 . . . wp−1, we have

S = un+1v1v3 . . . v2m+1 . . . (m = 1, 2 . . . ), (18)

which is the desired result.
Finally, S is obviously written as a concatenation of 0-regular subrows, so the proof is concluded.

Remark 5. In the previous Theorem, if we start the inductive construction of the words wi from u0 ∶= ε and
wi ∶= s2i−1s2i (i = 1, 2 . . . ), we can have two different possibilities:

1. un = ε for every non-negative integer n. In this case S is written as a concatenation of k-regular subrows
for every k, and therefore it is recurrent and reversal invariant by Lemmas 12 and 13.

2. At some step n̄ of the inductive procedure we have ε ≠ un̄ ∈ (n̄ − 1)-N. By Lemma 6 it follows that in this
case, continuing the inductive procedure, we have un ∈ (n̄ − 1)-N for every n > n̄.

Remark 6. We can apply the iterative procedure of Theorem 19 starting from an arbitrary element of S, as no
special properties of the beginning of S were used. This means that, for every positive integer k, the same
conclusion of the Lemma applies to the sequence sksk+1sk+2 . . . .

To proceed further we need one more definition, as we want to assign a special name to the subrows vi in
(3). We recall that, for every prefix w of S we have, by Lemma 3, that w−k is also a prefix.

Definition 20. For every prefix w such that ∣w∣ > 1, and for every positive integer k, we define the k-th block
generated by the prefix w as the unique subrow bk such that w−k+1bk = w−k.
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We have clearly
S = wb1b2b3 . . . , (19)

and
(wb1 . . . bk−1)−1 = w−k = wb1 . . . bk. (20)

Notice that, for every k, bk+1 = (bk)−1
S so that, for every k:

bk = (bk−1)−1 if ∣wb1 . . . bk−2∣ is even,

bk = ̃(bk−1)−1 if ∣wb1 . . . bk−2∣ is odd.

Since ∣w∣ = ∣w̃∣ for every finite word w, we have by Lemma 11, that

6
5
∣bk−1∣ ≤ ∣bk∣ ≤

9
5
∣bk−1∣, (21)

and therefore

(6
5
)

k−1
∣b1∣ ≤ ∣bk∣ ≤ (

9
5
)

k−1
∣b1∣. (22)

A block has the property of being always “not too small" with respect to whatever comes before it in the
sequence, and therefore the asymptotic frequencies of 1s and 2s, if they exist, have to be reached uniformly on
the blocks. More precisely, we have the following lemma:

Lemma 21. Let w be a prefix (∣w∣ ≥ 2) of S and bk (k = 1, 2 . . . ) the blocks generated by w. Suppose f∞(1) exists. Then
for every ε > 0 there is an integer n such that ∣ fbk

(1) − f∞(1)∣ < ε for every k ≥ n.

Proof. For every positive integer k, let us define the prefixes uk ∶= wb1 . . . bk. Using (22), it can be shown that
there exist two real numbers c1 and c2, with 0 < c1 < c2 < 1 such that, for every k large enough,

∣bk∣ ≥ c1∣uk∣ and ∣bk∣ ≤ c2∣uk∣. (23)

Indeed, setting ρk ∶= ∣bk+1∣
∣bk ∣

, we have

∣uk∣
∣bk∣

=
∣w∣ + ∣b1∣ (1+∑k−1

j=1 ∏
j
i=1 ρi)

∣b1∣∏k−1
i=1 ρi

,

so that, noticing that by Lemma 11 we have ∣w−1∣ = ∣w∣ + ∣b1∣ ≤ 6∣b1∣, it follows

∣uk∣
∣bk∣

≤ 1+ 6

∏k−1
i=1 ρi

+
k−1
∑
j=2

⎛
⎝

k−1
∏
i=j

ρi
⎞
⎠

−1

.

Since ρi ≥ 6
5 for every positive integer i, it follows

∣uk∣
∣bk∣

≤ 1+ 6(5
6
)

k−1
+

k−2
∑
i=1
(5

6
)

i
ÐÐÐ→
k→∞

6 .

Therefore, the optimal c1 is bounded from below by 1
6 and in particular is bounded away from zero (it is proved

similarly that the optimal c2 is bounded away from 1). We have

fuk(1) = fuk−1(1)
∣uk−1∣
∣uk∣

+ fbk
(1) ∣bk∣
∣uk∣

≥ fuk−1(1)(1− c2) + fbk
(1)c1 . (24)

Since uk is a prefix for every k and by (5) ∣uk∣ → ∞ when k → ∞, if there exists f∞(1) then for every ε > 0 there
is h so large that, for every k > h,

fuk−1(1) = f∞(1) + ε1,
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and
fuk(1) = f∞(1) + ε2,

with max{ε1, ε2} < ε. Therefore, from (24) we have

fbk
(1)c1 ≤ fuk(1) − fuk−1(1)(1− c2) = ε2 − ε1 + f∞(1)c2 + ε1c2,

whence
fbk
(1)c1 − f∞(1)c2 ≤ ε2 + ε1(1− c2),

so that
( fbk
(1) − f∞(1)) c1 ≤ ε2 + ε1(1− c2) + f∞(1)(c2 − c1). (25)

If there exists f∞(1) the difference c2 − c1 becomes arbitrarily small when k diverges. Indeed

∣bk∣
∣uk−1∣

= fuk−1(1) + 2 (1− fuk−1(1)) . (26)

The right hand side of (26) tends to 2− f∞(1) = 1+ f∞(2) when k →∞. Therefore also ∣bk ∣
∣uk ∣

converges to a limit
when k diverges, as it is obviously ∣uk∣ = ∣uk−1∣ + ∣bk∣. Therefore, if k is large enough, we can take c1 and c2

such that c2 − c1 is arbitrarily small, and since c1 is bounded away from 0, (25) implies that ∣ fbk
(1) − f∞(1)∣ is

vanishingly small when k diverges.

Remark 7. Let us take another prefix v with ∣v∣ > ∣w∣ and let dk denote the blocks generated by v. Then instead
of (26) we have

∣dk∣
∣pk−1∣

= fpk−1(1) + 2 (1− fpk−1(1)) , (27)

where pk ∶= vd1 . . . dk. Clearly the right hand side of (27) converges to 1 + f∞(2) faster than the right hand
side of (26), as for every k we have ∣pk∣ > ∣uk∣. From this it easily follows that for every ε > 0, if n satisfies
Lemma 21 for a given prefix w, then it satisfies Lemma 21 for v, i.e., ∣ fbk

(1) − f∞(1)∣ < ε for every k ≥ n implies
∣ fdk
(1) − f∞(1)∣ < ε for every k ≥ n.

Definition 22. We say that a prefix is k-minimal if it is the shortest k-normal prefix of S.

Clearly for every positive integer k there is at most one k-minimal prefix.
We want now to provide sufficient conditions (as weak as possible) implying that Keane’s conjecture is

true. Specifically, we require the existence of arbitrarily normal prefixes as well as a “relaxed uniformity"
property, i.e., that a sufficiently large portion of every block belonging to a certain subset (the ones generated
by k-minimal prefixes) is representative of the frequency of 1s on that block.

More precisely, we have the following theorem:

Theorem 23. Suppose that

1. There exists f∞(1);
2. There is a strictly increasing sequence of positive integers

K ∶= k1, k2, k3 . . .

such that there exists a kn-normal prefix pkn of S for every n;
3. For every ε > 0, there is a positive integer Lε such that ∣ fbn

m
(1) − fcn

m
(1)∣ < ε for every positive integer m such that

∣bn
m∣ > Lε, where

• bn
m (m = 1, 2, . . . ) are the blocks generated by the kn-minimal prefixes pkn ,

• cn
m is a prefix of the block bn

m such that ∣cn
m∣ ≥ Lε.

Then f∞(1) = 1
2 .
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Proof. Take ε > 0 and consider a prefix w so long that ∣w∣ ≥ Lε and

∣ fv(1) − f∞(1)∣ < ε, (28)

for every prefix v such that ∣v∣ ≥ ∣w∣. We can find a kn-minimal prefix p with kn being the smallest element of the
sequence K such that w is a prefix of (12)−kn+2, which implies that p−kn w is a prefix of S. By Lemma 21 there is
a positive integer m such that the m-th element km of the sequence K has the property that ∣ fbj

(1) − f∞(1)∣ < ε

for every j ≥ km, where bj are the blocks generated by p. There are two possibilities:

1. km > kn.

Then by hypothesis 2, we can find a ks-minimal prefix q where ks is the smallest element of the sequence
K such that ks ≥ km and ∣q∣ > ∣p∣ (of course the latter is verified for some ks because there are only finitely
many prefixes which are shorter than p). Clearly q−ks w is also a prefix of S. Moreover, recalling Remark
7 and denoting by dj the blocks generated by q, we have

∣ fdj
(1) − f∞(1)∣ < ε, (29)

for every j ≥ km and thus in particular for j ≥ ks. We can assume that ks ≥ 2, so that ∣q∣ ≥ 16, ∣d1∣ ≥ 8 and
thus

q−ks dks+1 = q−ks wu, (30)

with u nonempty.

Since ∣q−ks−1∣ is odd by hypothesis, integrating two more times (30) we get the prefix

q−ks−2dks+3 = q−ks−2w̃−2u−2
S ,

where u−2
S is nonempty, so that w̃−2 is a prefix of dks+3 (and does not coincide with it). Since ∣w−2∣ > ∣w∣ ≥

Lε, by assumption the following inequalities are verified:

∣ fdks+3
(1) − f∞(1)∣ < ε, (31)

∣ fw−2(1) − f∞(1)∣ < ε, (32)

and moreover, by hypothesis 3,
∣ fw̃−2(1) − fdkn+3

(1)∣ < ε.

Combining the last inequality with (31) and (32), we get that the difference ∣ fw̃−2(1) − fw−2(1)∣ is
vanishingly small if n is large enough, and therefore so is, by definition of mirror word, the difference
∣ fw−2(1) − fw−2(2)∣, from which we can conclude.

2. kn ≥ km.

Then we proceed as above with the prefix p instead of q and kn instead of km.

5. An iterative procedure providing arbitrarily long recurrent subwords

In this section we want to use the iterative construction shown in the proof of Theorem 19 to establish
constructively the existence of recurrent subwords of arbitrary length and identify places where they must
appear in the structure of S. Before this, let us expicitly recall that, for any aperiodic sequence and every
positive integer n, the existence of at least n + 1 distinct subwords of length n (which are easily shown to
be recurrent) is a basic combinatorial result (see for instance [17]). However, being so general, this kind of
argument is of course non-constructive, not providing any insight about where to find such recurrent subwords
in the sequence, nor about the structure of such subwords themselves.

In order to obtain a bit more, let us start by associating to every subrow of S a sequence over {0, 1}ω

describing the parity of all its S-integrals. More precisely, we introduce the following definition:
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Definition 24. For every subrow w we define P0(w) = 0 if ∣w∣ is even, P0(w) = 1 otherwise. We define
inductively Pn(w) = 0 if ∣w−n+1

S ∣ is even, Pn(w) = 1 otherwise. We call the sequence Pn(w) the history of parity of
the integrals of w.

In the particular case in which w is a prefix, Pn(w) is simply the sequence describing the parities of ∣w−n∣.

Lemma 25. Suppose that u1 and u2 are distinct prefixes of S such that S = u1w1 . . . and S = u2w2 . . . with the subrows
w1 and w2 coinciding as subwords. If there exists N such that PN(u1) ≠ PN(u2), then (w1)−k

S ≠ (w2)−k
S for every k ≥ N.

Proof. Suppose in particular that N is the least integer for which Pn(u1) ≠ Pn(u2). Then it follows that

(w1)−N+1
S = (w2)−N+1, while, recalling the substitution rules (1), we have (w1)−N

S = ̃(w2)−N
S ≠ (w2)−N

S . To
conclude it is enough to observe that if w and v are nonempty subwords, w ≠ v implies that the four words
w−1, w̃−1, v−1 and ṽ−1 are all distinct.

Let us now start the inductive procedure described in the proof of Theorem 19 with the empty prefix
u0 = ε and wi ∶= s2i−1s2i (i = 1, 2 . . . ). Suppose that n̄ is the least integer for which un̄ ≠ ε (we recall that, by
Lemma 12, if un = ε for every positive integer n, then every subword of S is recurrent). It follows from the
construction of Theorem 19 that it has to be un̄+k ∈ n̄-N for every positive integer k. By direct inspection it
can be seen that n̄ is not smaller than 2, as the prefix s1s2 . . . s16 = 1221121221221121 is 2-regular. Therefore,
according to Theorem 19, we have that, for every positive integer k,

S = ukw1w2 . . . , (33)

with uk ∈ h-N (h ≥ 2) and wi ∈ k-R for every i. Since uk is 1-regular, we have that, writing S as

S = u−2
k (w1)−2

S (w2)−2
S . . . (34)

the subrows (wi)−2
S all begin with 12. Therefore integrating k − 2 times (34) and suitably defining the subrows

vi, we obtain for S the structure
S = v0(z1)−k+2

S v1(z2)−k+2
S . . .

were zi = 12 for every integer i, and the subrows (zi)−k+2
S are all coinciding as subwords since, for every j ≤ k,

the parity of ∣(ukw1w2 . . . wn)−j∣ is the same for every n > 0. Finally, since k is arbitrarily large by Theorem 19,
(5) implies that the recurrent subwords (zi)−k+2

S are arbitrarily long.
We can also use the same iterative procedure to identify other arbitrarily long recurrent subwords which,

in general, are not coinciding with the previous ones. Indeed, recalling Remark 6, we can also apply the
iterative construction starting right after any given prefix of S. Taking, for instance, the 1-normal prefix
p ∶=1221, for every positive integer k we can write

S = pūkw̄1w̄2 . . . ,

where, noticing that s5 . . . s8 ∈ 2-R, we have ūk ∈ h̄-N (h̄ ≥ 2) and w̄i ∈ k-R for every i. Since pūk is 1-regular by
Lemma 6, we have that, writing S as

S = (pūk)−2(w̄1)−2
S (w̄2)−2

S . . . (35)

the subrows (w̄i)−2
S all begin with 12. Therefore, integrating (35) k − 2 times and suitably defining the subrows

v̄i, we obtain for S the structure
S = v̄0(z̄1)−k+2

S v̄1(z̄2)−k+2
S . . .

were z̄i = 12 for every integer i, and the subrows (z̄i)−k+2
S are all coinciding as subwords since, for every j ≤ k,

the parity of ∣(pūkw̄1w̄2 . . . w̄n)−j∣ is the same for every n > 0. Since by construction Pn(uk) ≠ Pn(pūk), Lemma
25 ensures that (zi)−k+2

S ≠ (z̄i)−k+2
S , while again since k can be arbitrarily large (from Theorem 19), the recurrent

subwords (z̄i)−k+2
S have arbitrarily large length by (5).
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6. More open questions

How do k-regular prefixes (or, in general, subrows) look? This is a difficult question. Let us take a look at
the first cases. A prefix w = s1 . . . sn is

• 0-regular if n is even;
• 1-regular if it is 0-regular and Σw is even;
• 2-regular if it is 1-regular and Σ

n
2−1
i=0 s2i+1 is even;

• 3-regular if it is 2-regular and

∣ {sj ∶ sj = 2 and j is odd} ∣ + ∣ {sj ∶ sj = 1, j is odd and Σj−1
i=1 si is even} ∣

is even.

With some effort one can go a bit further, but it is not easy to see where the thing is going.
From numerical computations one gets the impression that the requirement of being k-regular for large

k is quite hard to meet - and we recall that recurrence for S is equivalent to the existence of arbitrarily regular
prefixes. For instance, the shortest 10-regular prefix has length 6410, while the 10-minimal prefix has length
7144. Since the number of independent conditions that a finite word has to satisfy to be k-regular seems to
increase with k, the following conjecture arises naturally.

Conjecture 1. There are no ∞−regular subrows in SR(S).

A consequence of this conjecture is seen in Theorem 17. It is also natural, in our view, to formulate a
stronger conjecture, namely that two subrows whose integrals have exactly the same history of parity, must
coincide. More precisely, we state the following conjecture:

Conjecture 2. If u and w are two subrows and Pn(u) = Pn(w) for every n ≥ 0, then u = w.

If this is true, then Conjecture 1 follows, as if w is an ∞-regular subrow, we can split it in two subrows
with the same history of parity, which contradicts Conjecture 2.
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