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1. Introduction

U nless stated otherwise, graphs will be finite, undirected and connected simple graphs. A shortest path
having end vertices u and v is denoted by, u − v

(in G). If dG(u, v) ≥ 2 then a vertex w on u − v
(in G),

w ≠ u, w ≠ v is called an internal vertex on u − v
(in G). When the context is clear the notation such as dG(u, v),

degG(v) can be abbreviated to d(u, v), deg(v) and so on. Good references to important concepts, notation and
graph parameters can be found in [1–3].

The notions of parametric equivalence, isomorphism and uniqueness had been introduced in [4]. For ease
of reference we recall from [4] as follows: Let ρ denote some minimum or maximum graph parameter related
to subsets V(G) of graph G. Vertex subsets X and Y is said to be parametric equivalent or ρ-equivalent if and
only if both X, Y satisfy the parametric conditions of ρ. This relation is denoted by X ≡ρ Y. Furthermore,
if X ≡ρ Y and the induced graphs ⟨V(G)/X⟩ ≅ ⟨V(G)/Y⟩ then X and Y are said to be parametric isomorphic.
This isomorphic relation is denoted by X ≅ρ Y. Let all possible vertex subsets of graph G which satisfy ρ be
X1, X2, X3, . . . , Xk. If X1 ≅ρ X2 ≅ρ X3 ≅ρ ⋯ ≅ρ Xk then Xi, 1 ≤ i ≤ k are said to be parametric unique or ρ-unique.
The graph G is said to have a parametric unique or ρ-unique solution (or parametric unique ρ-set). If G has a
unique (exactly one) ρ-set X, then X is a parametric unique ρ-set.

This paper furthers the introductory research presented in [4].

2. Confluence in graphs

Shiny et al., [5] introduced the concept of a confluence set (a subset of vertices) of a graph G, also see [6]
for results on certain derivative graphs. Recall that for a non-complete graph G, a non-empty subset X ⊆ V(G)
is said to be a confluence set if for every unordered pair {u, v} of distinct vertices (if such exist) in V(G)/X for
which dG(u, v) ≥ 2 there exists at least one u − v

(in G) with at least one internal vertex, w ∈ X . Also a vertex
u ∈ X is called a confluence vertex of G. A minimal confluence set X (also called a ζ-set) has no proper subset
which is a confluence set of G. The cardinality of a minimum confluence set is called the confluence number of
G and is denoted by ζ(G). A minimal confluence set is denoted by C. To distinguish between different graphs
the notation CG may be used for a minimum confluence set of G. We recall two important results from [4]. We
remind that for a complete graph the confluence number is 0 hence, CKn = ∅, n ≥ 1.

Proposition 1. [4] A path Pn has a parametric unique ζ-set if and only if n = 1, 2 or n = 4+3i or n = 5+3i, i = 0, 1, 2, . . . .
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Proposition 2. [4] A cycle Cn has a parametric unique ζ-set if and only if n = 3, 4 or n = 5 + 3i or n = 6 + 3i,
i = 0, 1, 2, . . . .

2.1. Cycle related graphs

Henceforth, a cycle Cn, n ≥ 3 of order n has the vertex set V(Cn) = {vi ∶ i = 1, 2, 3, . . . , n}.

(a) A wheel graph (simply, a wheel) Wn is obtained from a cycle Cn, n ≥ 3 with an additional central vertex
v0 and the additional edges v0v1, 1 ≤ i ≤ n. The cycle is called the rim and the edges v0vi, 1 ≤ i ≤ n are
called spokes. Alternatively, Wn = Cn +K1 and V(K1) = {v0}.

Proposition 3. A wheel graph Wn has a parametric unique ζ-set.

Proof. Since W3 is complete the result is trivial. For n ≥ 4 the distance d(vi, vj) ≤ 2 for all distinct pairs. For
i, j ≠ 0 and vi not adjacent to vj there exists a 3-path (or 2-distance path) with v0 the internal vertex. Hence, the
unique ζ-set is {v0}, therefore parametric unique.

(b) A helm graph Hn is obtained from a wheel graph Wn by adding a pendent vertex (or leaf) ui to each rim
vertex vi.

Proposition 4. (a) The helm graph H3 does not have a parametric unique ζ-set.
(b) A helm graph Hn, n ≥ 4 has a parametric unique ζ-set.

Proof. (a) Consider H3. Clearly and without loss of generality the sets X1 = {v0, v1, v2}, X2 = {v1, v2, v3} and
X3 = {v1, v2, u3} are all minimal confluence sets. Hence ζ(H3) ≤ 3. It is easy to verify that no 2-vertex
subset is a confluence set. Thus, ζ(H3) > 2. Also, ⟨V(H3)/X1⟩ ≇ ⟨V(H3)/X2⟩. Therefore H3 does not have
a parametric unique ζ-set. The aforesaid follows in essence from the fact that H3 is complete. Therefore,
it is not necessary for v0 to be in all ζ-sets.

(b) For Hn, n ≥ 4 the distance d(ui, ui+1) = 3 hence a rim vertex is required. The distance d(ui, ui+2) = 5 hence
the vertex v0 will suffice along the 5-path uiviv0vi+2ui+2. By symmetry considerations and therefore up
to isomorphism and without loss of generality we have two subcases.
Subcase 1. If n is even the set X1 = {v0, v1, v3, v5, . . . , vn−1} is a ζ-set and clearly Hn has a parametric
unique ζ-set.
Subcase 2. If n is odd the sets X1 = {v0, v1, v3, v5, . . . , vn−1} and X2 = {v0, v1, v3, v5, . . . , vn−2, vn} are a
ζ-sets. Clearly ⟨V(Hn)/X1⟩ ≅ ⟨V(Hn)/X1⟩. Thus Hn has a parametric unique ζ-set.

As a direct consequence of the proof of Proposition 4, we get the next corollary.

Corollary 1. A helm graph has ζ(Hn) = ⌈ n
2 ⌉ + 1.

(c) A flower graph Fln is obtained from a helm graph Hn by adding the edges v0ui, 1 ≤ i ≤ n.

Proposition 5. A flower graph Fln has a parametric unique ζ-set.

Proof. The result follows by similar reasoning as in the proof of Proposition 3.

As a direct consequence of Proposition 5, we get the next corollary.

Corollary 2. A flower graph has ζ(Fln) = 1.

(d) A closed helm graph Hc
n is obtained from a helm graph Hn by completing a cycle, C′

n = u1u2u3⋯unu1 on
the leafs of Hn.

Proposition 6. (a) A closed helm graph Hc
n for n = 4 or n is odd does not have a parametric unique ζ-set.

(b) A closed helm graph Hc
n, n ≥ 6 and even, has a parametric unique ζ-set.
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Proof. It is easy to verify that all distance paths such that d(ui, uj) ≤ 3 are paths on C′

n. Also, for ui, uj ∈ CC′n we
have d(ui, uj) ≤ 3. It follows that CC′n ⊆ CHc

n
.

(a) By similar reasoning to that in the proof of Proposition 4(a) it follows that Hc
3 and Hc

4 do not have a
unique ζ-set.

From the set X1 = {vi ∶ ui ∉ CC′n} ∪ {v0} it is possible to select a minimum confluence set in respect of the
spanning subgraph Hn say set X2. The set CHc

n
= CC′n ∪X2 is a minimum confluence set.

Subcase (a)(1). Since by symmetry the choice of say, X2 can be fixed, For n ≥ 5 and odd, the choice of CC′n
can rotate such that ⟨V(Hc

n)/CHc
n
⟩ does not remain isomorphic.

(b) By similar reasoning X2 can be fixed. However, for n ≥ 6 and even and by symmetry properties of C′

n all
choices of CC′n yield isomorphic ⟨V(Hc

n)/CHc
n
⟩.

As a direct consequence of the proof of Proposition 6, we get the next corollary.

Corollary 3. A closed helm graph has ζ(Hc
n) = ⌈ n

2 ⌉ + 1.

(e) A gear graph Gn is obtain from a wheel graph Wn by inserting a vertex ui on the edge vivi+1 and n+ 1 ≡ 1.
Note that Gn has 2n + 1 vertices and 3n edges. The rim is now called a boundary cycle denoted by Cb(Gn).

Proposition 7. (a) G3 has a parametric unique ζ-set.
(b) A gear graph Gn and n ≥ 5 is odd does not have a parametric unique ζ-set.
(c) A gear graph Gn and n ≥ 4 is even has a parametric unique ζ-set.

Proof. (a) For G3 it follows easily that up to isomorphism the ζ-set {u1, v3} is unique.
(b) The inner-area enclosed by the cycle C′

2n = v1u1v2u2⋯vnunv1 can be partitioned into n planar areas, each
enclosed by a C4. For all pairs vi, vj it is necessary and sufficient that v0 ∈ ζ-set. Let n ≥ 5 be odd. Without
loss of generality, an optimal minimal confluence set is given by X1 = {v0, u1, u3, . . . , un−2, un−1} or X2 =
{v0, u1, u3, . . . , un−2, vn} or X3 = {v0, u1, u3, . . . , un−2, un}. Hence, ζ(Gn) ≤ ⌈ 2n

4 ⌉ + 1 = ⌈ n
2 ⌉ + 1. Because

the boundary cycle Cb(Gn) has ζ(Cb(Gn)) = ⌈ 2n
3 ⌉ it follows that ζ(Gn) ≥ ⌈ 2n

3 ⌉. However for n is odd,
⌈ 2n

3 ⌉ = ⌈ n
2 ⌉ + 1. Since,

⟨V(Gn)/X1⟩ ≇ ⟨V(Gn)/X2⟩.

It follows that a gear graph Gn does not have a parametric unique ζ-set for n is odd.
(c) For n ≥ 4 and even, reasoning similar to that in (b) show that up to isomorphism the ζ-set X1 =

{v0, u1, u3, . . . , un−2, un−1} is unique. Reasoning in respect of bounds on ζ(Gn) similar to that in (a) settles
the result.

As a direct consequence of the proof of Proposition 7, we get the next corollary.

Corollary 4. The gear graph G3 has ζ(G3) = 2. A gear graph of order n ≥ 4 has ζ(Gn) = ⌈ n
2 ⌉ + 1.

(f) A sun graph S⊠n , n ≥ 3 is obtained by taking the complete graph Kn on the vertices v1, v2, v3, . . . , vn

together the isolated vertices ui, 1 ≤ i ≤ n and adding the edges viui, uivi+1 and n + 1 ≡ 1. The boundary
cycle of a sun graph is the cycle Cb(S⊠n ) = v1u1v2u2v3u3⋯unv1.

Proposition 8. A sun graph S⊠n , n ≥ 3 has a parametric unique ζ-set if and only if Cb(S⊠n ) is of order n = 3i, i =
1, 2, 3, . . .

Proof. Since all pairs vi, vj are adjacent it suffices to only consider a ζ-set of Cb(S⊠n ). Since deg(ui) = 2 and
deg(vj) = 3 any ζ-set must be graphically symmetrical for a sun graph to have a parametric unique ζ-set. A
graphically symmetrical ζ-set means that, measured along the boundary cycle, min{d(vj, uk) ∶ vj, uk ∈ ζ-set} =
3. It implies that n = 3i, i = 1, 2, 3, . . . .
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The converse follows from the fact that sun graphs with Cb(S⊠n ) of order n ≠ 3i, i = 1, 2, 3, . . . do not have
graphically symmetrical ζ-sets of even order.

Note that if a sun graph has a parametric unique ζ-set then ζ(S⊠n ) is even. Furthermore, as a direct
consequence of the proof of Proposition 8, we get the next corollary.

Corollary 5. A sun graph has ζ(S⊠n ) = ⌈ 2n
3 ⌉.

(g) A sunflower graph S⊛n , n ≥ 3 is obtained by taking the wheel graph Wn together the isolated vertices ui,
1 ≤ i ≤ n and adding the edges viui, uivi+1 and n + 1 ≡ 1. The boundary cycle of a sun graph is the cycle
Cb(S⊛n ) = v1u1v2u2v3u3⋯unv1.

Proposition 9. A sunflower graph S⊛n , n ≥ 3 does not have a parametric unique ζ-set.

Proof. For all pairs vi, vj it is sufficient that v0 ∈ ζ-set. Thereafter any ζ-set X1 in respect of Cb(S⊛n ) is required
to obtain CS⊛n

= X1 ∪ {v0}. It implies that ζ(S⊛n ) = n. In turn, the aforesaid confluence number permits that
say, X2 = {v1, v2, v3, . . . , vn} or X3 = {v1, v2, v3, . . . , vn−1, un−1} are ζ-sets. Since, ⟨V(S⊛n )/X1⟩ ≇ ⟨V(S⊛n )/X2⟩ ≇
⟨V(S⊛n )/X3⟩ the result follows.

As a direct consequence of the proof of Proposition 9, we get the next corollary.

Corollary 6. A sunflower graph has ζ(S⊛n ) = n.

(h) A sunlet graph S⊖n , n ≥ 3 is obtained by taking cycle Cn together the isolated vertices ui, 1 ≤ i ≤ n and
adding the pendent edges viui.

Proposition 10. A sunlet graph S⊖n , n ≥ 3 has a parametric unique ζ-set.

Proof. Case 1. Let n ≥ 3 and odd. Without loss of generality and by isomorphism, it is easy to verify that
the sets X1 = {v1, v3, v5, . . . , vn} and X2 = {v1, v3, v5, . . . , vn−2, vn−1} are ζ-sets. Furthermore, up to isomorphism
those are the only distinguishable ζ-sets. Since,

⟨(V(S⊖n )/X1⟩ ≅ ⟨(V(S⊖n )/X2⟩,

the result follows for n ≥ 3 and odd.
Case 2. By similar reasoning as in Case 1 the result follows for n ≥ 4 and even.

As a direct consequence of the proof of Proposition 10, we get the next corollary.

Corollary 7. A sunlet graph has ζ(S⊖n ) = ⌈ n
2 ⌉.

(i) A circular ladder (or prism graph) L○n, n ≥ 3 is obtained by taking two cycles of equal order n. Label as,
C1

n = v1v2v3⋯vnv1 and C2
n = u1u2u3⋯unu1. Add the edges viui, 1 ≤ i ≤ n. A circular ladder can be viewed

as Hc
n − v0.

Proposition 11. A circular ladder graph L○n has a parametric unique ζ-set if and only if n = 4 or n = 3i for i = 2, 3, 4, ....

Proof. Part 1. For n = 4, Xi = {ui, vj}, i = 1, 2, 3, 4, j ∈ {1, 2, 3, 4} such that d(ui, vj) = 3, are the minimum
confluence sets for L○4. Since ⟨V(L○4)/Xi⟩ are C6 for i = 1, 2, 3, 4, we have the result for n = 4.

In a circular ladder graph L○n, n ≠ 4 there are n copies of C4 = viuiui+1vi+1. For each C4 = viuiui+1vi+1, at
least one of the vertices vi, ui, ui+1, vi+1 belongs to every minimum confluence set of L○n.
Part 2. For n = 3, X1 = {v1, v2} and X2 = {v1, u2} are two minimum confluence set for L○3. However, ⟨V(L○3)/X1⟩
and ⟨V(L○3)/X2⟩ are not isomorphic. Hence L○3 has no unique parametric set.
Part 3. For n = 3i, i = 2, 3, .., let CCn(vi) be a minimum confluence set of Cn starting from vi and CC′n

(uj) be a

minimum confluence set of C
′

n starting from uj. Then for i ≠ j,Xij = CCn(vi) ∪ CC′n
(uj) is a minimum confluence
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set for L○n and ⟨V(L○n)/Xij⟩ consists of n
3 copies of P3. Hence the result for n = 3i, i = 2, 3, ...

Part 4. If n ≡ 2(mod 3). Let X1 be the minimum confluence set for L○n such that ui, ui+2, vi+1 ∈ X1 and let X2

be the minimum confluence set for L○n such that ui, ui+2, vi ∈ X2. Then ⟨V(L○n)/X1⟩ and ⟨V(L○n)/X2⟩ are not
isomorphic. Hence L○n has no parametric unique set if n≥5 ≡ 2(mod 3).

By a similar argument we have to prove that L○n has no parametric unique set if n≥7 ≡ 1(mod 3).
Since all n ∈ N≥3 have been accounted for the ’if’ has been settled.
For all valid cases the converse, ’only if’, follows through reasoning by contradiction.

Corollary 8. A circular ladder has,

ζ(L○n) =
⎧⎪⎪⎨⎪⎪⎩

2, if n = 4;

2⌈ n
3 ⌉, if n = 3 or n ≥ 5.

Proof. The result is a consequence of the proof of Proposition 11. The exception lies in the fact that L○4 has
5 = n=4 + 1 cycles C4 to account for. All other L○n≠4

have n cycles C4 to account for.

Observe that the confluence number of a circular ladder is always even.

(j) A tadpole graph T(m, n), m ≥ 3, n ≥ 1 is obtained from a cycle Cm = v1v2v3⋯vmv1 and a path Pn =
u1u2u3⋯un by adding an edge between an end-vertex of Pn and a vertex of Cm. The new edge is also
called a bridge.

Proposition 12. A tadpole graph T(m, n), m ≥ 3, n ≥ 1:

(a) Tadpole graphs T(3, n), n ≥ 1 have a parametric unique ζ-set if and only if n = 3i, i = 1, 2, 3, . . . .
(b) Tadpole graphs T(4, 1), T(4, 2) have a parametric unique ζ-sets.
(c) Tadpole graphs T(5, 1) does not have a parametric unique ζ-set and T(5, 2) has.
(d) Tadpole graphs T(m, 1), T(m, 2), m ≥ 6 have a parametric unique ζ-set if and only if m = 6+ 3i, i = 0, 1, 2, . . .
(e) Tadpole graphs T(m, n), m ≥ 4 and n ≥ 3 have a parametric unique ζ-set if and only if both the cycle Cm and the

path Pn have parametric unique ζ-sets.
(f) All other tadpole graphs as excluded through (a) to (f) do not have a parametric unique ζ-set.

Proof. (a) The tadpole graphs T(3, n), n ≥ 1 does not have a parametric unique ζ-set for P1, P2

(straightforward).
Subcase (a)(1). For n + 2 = 5 + 3i, i = 0, 1, 2, . . . the ζ-set of Pn+2 is unique hence, T(3, n) has a parametric
unique ζ-set.
Subcase (a)(2). For n + 2 = 6 + 3i, i = 0, 1, 2, . . . the ζ-set of Pn+2 is not parametric unique hence, T(3, n)
does not have a parametric unique ζ-set.
Subcase (a)(3). For n+2 = 7+3i, i = 0, 1, 2, . . . the ζ-set of Pn+2 is parametric unique. However, since some
ζ-sets may contain vertex vj of the bridge the tadpole T(3, n) does not have a parametric unique ζ-set.

All tadpoles T(3, n), n ≥ 1 have been accounted for because,

N = {1, 2} ∪ {3+ 3i ∶ i = 0, 1, 2, . . . } ∪ {4+ 3i ∶ i = 0, 1, 2, . . . } ∪ {5+ 3i ∶ i = 0, 1, 2, . . . }.

(b) The tadpole graphs T(4, n), n ≥ 1 have a parametric unique ζ-set for P1, P2. It follows from the fact that a
bridge vertex say, vi has to be in any ζ-set.
Subcases n + 2 = 5+ 3i, n + 2 = 6+ 3i and n + 2 = 7+ 3i, i = 0, 1, 2, . . . will be settled in (d) and (e) below.

(c) The tadpole graphs T(5, n), n ≥ 1 does not have a parametric unique ζ-set for P1 bacause it is easy to verify
that an end-vertex of the bridge need not be in all ζ-sets. However for P2 the tadpole has a parametric
unique ζ-set. It follows from the fact that a bridge vertex say, vi has to be in any ζ-set.
Subcases n + 2 = 5+ 3i, n + 2 = 6+ 3i and n + 2 = 7+ 3i, i = 0, 1, 2, . . . will be settled in (d) and (e) below.

(d) The tadpoles T(m, 1), T(m, 2), m ≥ 6 do not require that vertices u1 and/or u2 to necessarily be in a ζ-set.
Hence, all ζ-sets of cycle Cm which contain a vertex of the bridge suffice to be ζ-sets of the tadpoles.
Therefore has a parametric unique ζ-set if and only if Cm has a unique ζ-set. Therefore, if and only if
m = 6+ 3i, i = 0, 1, 2, . . . The converse follows easily by contradiction.
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(e) Finally, for a tadpole T(m, n), m ≥ 4 and n ≥ 3 and both the cycle Cm and the path Pn have parametric
unique ζ-sets, it is easy to verify that the ζ-sets of the tadpole all contain a vertex vj of the bridge.
Therefore the tadpole has a parametric ζ-set. Else, it is always possible to find a ζ-set of the tadpole
which contains a vertex vj which is on the bridge and another ζ-set which does not. Therefore, such
tadpoles do not have a parametric unique ζ-set. Hence, the tadpoles T(m, n), m ≥ 4 and n ≥ 3 have a
parametric unique ζ-set if and only if both Cm and Pn have parametric unique ζ-sets.

(f) All other tadpole graphs which were excluded through reasoning of proof, (a) to (e) do not have a
parametric unique ζ-set.

(k) A lollipop graph L⊠(m, n), m ≥ 3, n ≥ 1 is obtained from a complete graph Km and a path Pn by adding a
bridge between an end-vertex of Pn and a vertex of Cm.

Proposition 13. A lollipop graph L⊠(m, n), m ≥ 3, n ≥ 1 has a parametric unique ζ-set if and only if n = 3i, i =
1, 2, 3, . . . .

Proof. The proof follows directly from the proof of Proposition 12(a).

(l) A generalized barbell graph B(n, m), n, m ≥ 3 is obtained from two complete graph Kn, Km and adding a
bridge.

Proposition 14. A generalized barbell graph B(n, m), n, m ≥ 3 has a parametric unique ζ-set if and only if n = m.

Proof. Let Kn be on vertices v1, v2, v3, . . . , vn and Km on vertices u1, u2, u3, . . . , um. For any pair viuj and edge
viuj not the bridge, the distance d(vi, uj) = 2 or 3. Therefore any vertex of the bridge yields a ζ-set. Without
loss of generality let the ζ-set be {vk}. It follows that ⟨V(B(n, m))/{vk}⟩ ≅ Kn−1 ∪ Km. Hence, B(n, m) has a
parametric unique ζ-set if and only if n = m.

3. Conclusion

The study of cycle related graphs has not exhausted. Note that for those cycle related graphs which do
not have a parametric unique ζ-set the proof by contradiction can be utilized well.

The idea of combined parametric conditions remains open. Note that the parametric conditions will be
ordered pairs. For example, the path P3 = v1v2v3 has a unique minimum dominating set i.e. the γ-set X1 = {v2}.
Since X1 is also a ζ-set of P3 the set is said to be a parametric unique (γ, ζ)-set. However, since X1 per se is not
a parametric unique ζ-set, it cannot be said to be a parametric unique (ζ, γ)-set. On the other hand for a star
S1,n, n ≥ 3 the set X1 = {v0} is both a parametric (γ, ζ)-set and a parametric unique (ζ, γ)-set. Studying such
parametric combinations for say parameters ρ1(G) and ρ2(G) requires that, ρ1(G) = ρ2(G).

Conjecture 1. If graph G has a pendent vertex then G has a unique ζ-set if and only no ζ-set exists which contains a
pendent vertex.

A strict proof of Corollary 8 through mathematical induction is an interesting exercise for the reader.
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